幾何ブラウン運動の導出方法

このQ&Aのポイント
  • 幾何ブラウン運動は微分方程式dX(t) = μX(t)dt + σX(t)dB(t)で表されます。
  • 伊藤の公式を用いると、幾何ブラウン運動の式に対してf(x)=logxを適用することができます。
  • 導出された幾何ブラウン運動の式はlogX(t) = logX(0) + ∫_0^t(μX(s)/X(s) + (1/2) ( -σ^2X(s)^2 / X(s)^2 ))ds + ∫_0^t (1/X(s))σX(s) dB(s)です。
回答を見る
  • ベストアンサー

幾何ブラウン運動について

幾何ブラウン運動が微分の形で、 dX(t) = μX(t)dt + σX(t)dB(t) のように表される。この式は以下の式を表している X(t) = X(0) + μ∫_0^t X(s)ds + σ∫_0^t X(s)dB(s) ここで、μ(t,ω)= μX(t,ω),σ(t,ω)=σX(t,ω)として伊藤の公式を f(x) = logxに適用する。 df/dx = 1/x , d^2f/dx^2 = - 1/x^2 であるから、次のようになる。 logX(t) = logX(0) + ∫_0^t(μX(s)/X(s) + (1/2) ( -σ^2X(s)^2 / X(s)^2 ))ds + ∫_0^t (1/X(s))σX(s) dB(s) …(※) = μt - (1/2)σ^2t + σB(t) この(※)の式がどのような手順(計算)で導出されているかわかりません。logをとっていることはわかるのですが、第二項と第三項がどのようにして出てくるのかが理解できず困っています。 正確な解答だけではなく、助言や参考にできること等なんでも助かります。 わかりにくい式だとは思いますが、よろしくお願いします

質問者が選んだベストアンサー

  • ベストアンサー
  • ur2c
  • ベストアンサー率63% (264/416)
回答No.1

幾何ブラウン運動 http://en.wikipedia.org/wiki/Geometric_Brownian_motion の式を伊藤の補題 http://en.wikipedia.org/wiki/It%C5%8D%27s_lemma http://ja.wikipedia.org/wiki/%E4%BC%8A%E8%97%A4%E3%81%AE%E8%A3%9C%E9%A1%8C で計算してるだけですので、確率微分方程式の教科書で、伊藤の補題がどうして成立つのかを調べれば良いのではないでしょうか?

sindred
質問者

お礼

そうでした。実際の計算はなんら難しい点はありませんでした 私の基礎力不足が原因でした。 参考URLの数式を追っていくと理解できました。 回答ありがとうございました<(_ _)>

関連するQ&A

  • 幾何ブラウン運動

    幾何ブラウン運動に従う,(パラメータμ、σ)S(t)の期待値がS0*e^[t(μ+σ^2/2]になることをどのように証明したらよいでしょうか?? 対数正規分布パラメータm,vに従う確率変数Xの期待値がe^(m+v^2/2) になることをつかうそうなのですがわかりません。教えてください。

  • 幾何的ブラウン運動の遷移)確率密度関数の求め方

    幾何的ブラウン運動 dX_t=u X_t dt + σX_t dW_t X_0=x の遷移確率密度関数が以下のようになる途中計算をできるだけ省略無く丁寧に教えてきださい。 p(t,x,y)= 1/(√2πσ^2 t) exp(-(log(Y/x)-ut)^2/(2σ^2 t)) 宜しくお願いします

  • 2次、3次精度風上差分(空間微分)の導出

    2次精度と3次精度の風上差分の導出を行っています。 f(x)についてxまわりでテイラー展開し、(負の場合はh=-kとおく) f(x+h)=f(x)+h(df/dx)+・・・ f(x-k)=f(x)-k(df/dx)+・・・ f(x-2k)=f(x)-2k(df/dx)+・・・ (df/dx)をx-2k,x-k,x,x+hにおけるfの値で近似することを考えると、 (df/dx) = af(x-2k)+bf(x-k)+cf(x)+df(x+h) となる。 先ほどテイラー展開したものをこの式に代入して係数をもとめれば2次、3次精度の風上差分の空間微分の式が求まると考えているのですが、よくわかりません。 もっとシンプルな方法があれば、全く別の導出方法でも構わないので教えて頂けないでしょうか。 よろしくお願いいたします。

  • ★★幾何学でお聞きしたい問題が二つあります。困ってます(;;)わわわ・

    ★★幾何学でお聞きしたい問題が二つあります。困ってます(;;)わわわ・・・★★ 以下の二つの問題がわからなくて困ってます。 この問題を解かないと卒業できません。。。。 お答えいただけたら嬉しいです。 というかお願いします。 慈悲でお願いします! ------------------------------------------- 三次元球面:S^3 を S^3 ={ f(x,y,z,w) ∈ R^4 : x^2 + y^2 + z^2 + w^2 = 1} で定義する。S^3 からR への写像 f : S^3 → R をf(x,y,z,w) = 2y + 1 で定義する。 このときf のランクを調べよ。 ------------------------------------------- 整数p,q に対して、f : S^1 → R^2 を f(cos t, sin t) = (cos pt, sin qt) で定義する。 (a) f はうまく定義されていることを示せ。 (b) f が1 : 1 であるための必要十分条件を求めよ。 (c) f が1 : 1 であるとき、df : TS^1 → TR^2 は1 : 1 か? ------------------------------------------- お願いします・・・。

  • ブラウン運動、標準正規分布

    以下、2つ((1)(2))分からないところを教えていただければ幸いです。 時刻tにおける株価S(t)が平均r、ボラティリティσの幾何ブラウン運動 dS(t)/S(t)=(rdt+σdW(t))・・・1 に従うものと仮定する。 ここで、幾何ブラウン運動に関する標準的結果を用いて、 E[S(t)/S(0)]=exp(rt)・・・2 となることが分かる。 (1)↑これは、1式から2式はどうやって出てきているのでしょうか?「標準的結果を用いて」としか記載がなくて分からないのですが。 S(t)は対数正規分布に従い、 E[lnS(t)]=lnS(0)+rt-σ^2t/2 V[lnS(t)]=σ^2t となるので、Φ(・)を標準正規分布の分布関数とすると、 Pr{S(t)≦S(0)}・・・3 =Pr{lnS(t)≦lnS(0)} =Φ((0.5σ-r/σ)√t) =0.507 (r=0.1、σ=0.45、t=15の場合を想定) (2)↑3式からこの答えまでの計算がよくわかりません。 特に3行目以降が・・。 もし、分かる方いらっしゃればよろしくおねがいします。

  • 積分の微分

    以下x>0 F(x)=∫[x,x^2]logtdt=∫[1,x^2]logtdt-∫[1,x]logtdt よってdF(x)/dx=logx^2-logx=logx となりました。答えは(4x-1)logxです。 間違いをおしえてください!

  • 置換積分 不定積分 

    (1) ∫(1+logx)/x dx (t=logx) (2) ∫x³√(1+x²) dx (t=1+x²) 解答お願いします途中式もお願いします

  • この等式に何の意味が・・・.

    非線形振動で平均法というものを習っています. その中で何を意味するのかわからない等式が出てきたのでここで質問させていただきます. その等式の導出は以下の通りです. 次の式を考えます. x = X cos(ωt + φ) ・・・(1) 式(1)をtで微分すると次のようになります. dx/dt = -Xω sin(ωt + φ) ・・・(2) ここで,Xとφが時間変化することを考えます(X = X(t), φ = φ(t)). これらをそのまま式(2)へ代入すると次のようになります. dx/dt = -X(t)ω sin(ωt + φ(t))・・・(3) 一方,式(1)においてXとφが時間変化することを考慮してtで微分すると次のようになります. dx/dt = dX(t)/dt ω cos(ωt + φ(t)) - X sin(ωt + φ(t)) * (ω + dφ(t)/dt) ・・・(4) 式(3)と式(4)より dX(t)/dt ω cos(ωt + φ(t)) - X dφ/dt sin(ωt + φ(t)) = 0 ・・・(5) が導かれます. そもそも式(3)が本当に正しいやり方なのかも疑問なのですが,この式(3)と式(4)を比較して導かれた式(5)は一体何を意味しているのでしょうか. また式(5)は数学的に普遍的に成り立つ式なのでしょうか. 私には見当もつかないのでどなたか詳しい方がいらっしゃいましたら教えていただきたいです.

  • 微分・積分 問題

    微分・積分 問題 F(x)=∫[a→-x^2]f(t)dtのときd/dxF(x)を求めよ。 f(t)の原始関数の一つをF(t)とする。 ∫[a→-x^2]f(t)dt=[F(t)][a→-x^2]=F(-x^2)-F(a) d/dx(F(-x^2)-F(a)) -x^2=sとおくと、ds/dx=-2x→dx=ds/-2xである。 F(s)を微分した関数をf(s)とする。→これは、必要ですか? d/(ds/-2x)(F(s)-F(a))=-2x・d/ds(F(s)-F(a)) =-2xf(s)=-2xf(-x^2) 答えは合っているでしょうか? ご回答よろしくお願い致します。

  • 緩和法の計算

     ES+S=ES  s+(es)=s0 , e+(es)=e0  ds/dt = k-1(es)-k1se     = k-1(s0-s)-k1s(e0+s-s0)≡f(s) (29) もしs*に反応条件の段階変化の後に平衡でs濃度を示せるなら、s*は決定できる。 f(s*) = 0 (30) ここでf(s)はEq29の右辺で、ds/dtと等しい 任意の緩和実験でsはs*に近づき、テーラー展開でf(s)を求めることができる f(s)~f(s*)+{df(s*)/ds}(s-s*)+ terms of order (s-s*)^2 and higher (31) xを平衡濃度からの偏差とすると x = s - s* (32) s*が時間に依存しないことを考慮すれば、式29と式32から線形の質量平衡式が 得られる dx/dt = -〔k-1+k1(e0-s0+2s*)〕x (33) もし最初、系が段階摂動の前に条件と一致している前の平衡にあるなら x(0) = Δx0  x(t) = Δx0e^(-t/τ)  1/τ = k-1+k1(e0-s0+2s*)=k-1+k1(e*+s*) の、(29)-(33)式を導くまでの計算が f(s) = k-1 (s0 - s) - k1 s (e0 + s - s0) df(s)/dt = - k-1 - k1 (e0 + s - s0) - k1 s df(s*)/dt = - [k-1 - k1 (e0 - s0 + 2 s*)] ∴ f(s) = f(s*) + df(s*)/dt (s - s*) + d2f(s*)/dt2 (s - s*)^2 / 2 + ... = 0 - [k-1 - k1 (e0 - s0 + 2 s*)] (s - s*) + Δ f(x + s*) = d(x + s*)/dt = dx/dt + ds*/dt = f(x) + 0 なので、 f(x) = f(x + s*) ≒ - [k-1 - k1 (e0 - s0 + 2 s*)] x だと説明して頂いたのですが、 後から見てよく判らないことに気付きました。 すみませんが、文章での説明をお願いします。 あと、 x(0) = Δx0 となるのはどういうことなのですか?