• 締切済み

なぜ正規行列で対角化するの??

アホな質問です。 対角化するとき、エルミート行列あるいは実対象行列のときはユニタリー行列Uあるいは直行行列を使って対角するような問題ばかりなのですが、なぜ、普通に任意の正則行列Pをつかって対角化しないでしょうか? ユニタリー行列を探すには、固有ベクトル見つけたあと、グラムシュミットで正規直交基底をつくってやらんきゃならんわけですよね。単に固有ベクトルならべてつくるPより、面倒だと思うのですが? 教科書にはそういうときはユニタリで対角化できるみたいに書いてあるんで普通の正則行列Pでも対角化自体はできんですか? その後においてどういう利点があるんでしょうか? 確か前どっかで聞いたことあったような・・Uが直行しているのでなんかの計算で便利なんでしたっけ?何かをわざわざ計算しなくてもいいから楽?ってどっかで見たか聞いたことあったような・・・。わかりやすく大学初学年にもわかりやすい程度でお願いします・・。m(__)m

みんなの回答

  • reiman
  • ベストアンサー率62% (102/163)
回答No.4

正規行列の固有ベクトルは必ず直行していて、シュミットの直交化をするとは言っても単に長さを1に規格化するだけで> これは大間違いです。 No.3はNo.2の捕捉を読まずにNo.3を書いたので 補足に対する回答をしていませんでした。 固有値がすべて異なるならばそれでOKですが 同一固有値もあるので長さを1にするだけではありません。 真面目にシュミット直交化をしなければなりません。

  • reiman
  • ベストアンサー率62% (102/163)
回答No.3

失礼しました。 No.2は不要でした。 No.1でOKです。 シュミットの直交化する際に固有空間で区分けする必要はありません。 n次正規行列Aについて n個のn次列ベクトル列 p[1],p[2],p[3],…,p[n]によって [p[1] p[2] p[3] … p[n]]^-1A[p[1] p[2] p[3] … p[n]] が対角行列になるならば列ベクトル列 p[1],p[2],p[3],…,p[n] をこの順にシュミット直交化してできる列ベクトル列を q[1],q[2],q[3],…,q[n] としたとき [q[1] q[2] q[3] … q[n]]^-1A[q[1] q[2] q[3] … q[n]]= [p[1] p[2] p[3] … p[n]]^-1A[p[1] p[2] p[3] … p[n]] です。 勿論シュミット直交化したわけなので [q[1] q[2] q[3] … q[n]]^*=[q[1] q[2] q[3] … q[n]]^-1 です。(^*は複素共役転置) これは 正規行列の異なる固有値に対する固有ベクトル同士は直交する という性質から簡単に導かれます。 2,3次元空間でいうと斜交座標で我慢するか 直交座標でいくかといった違いなので 直交化することによって自分の問題が解決するかどうかに応じて 使い分けすれば良いでしょう。 例えば x'(t)=Ax(t) といった連立微分方程式を解くだけならば座標変換により シュミット直交化する必要はありません。

  • reiman
  • ベストアンサー率62% (102/163)
回答No.2

正確さに欠けたので再度書くと 正規行列の場合には異なる固有値に対する固有ベクトルは必ず直交するので 同一固有値に対する固有空間内の固有ベクトルの組をその空間内でシュミット直交化を行うことによって対角化するための固有ベクトルを作成して それらのベクトルを並べるとユニタリ行列になってくれるのである。

tt00ea
質問者

お礼

ありがとうございます。くだけて言えば、正規行列の固有ベクトルは必ず直行していて、シュミットの直交化をするとは言っても単に長さを1に規格化するだけでユニタリになるから、そんなにすごくめんどくさいわけでもないということですか??

  • reiman
  • ベストアンサー率62% (102/163)
回答No.1

必要なければ別に正則行列で対角化してもよい。 ただ、正規行列の直交化の場合はシュミットの直交化を行っても 対角行列が壊れないのでその方が便利ならばそうすればよいだけ。 必ずしもそうする必要はない。 しかし、問題で要求されたらできるのだからそうしなければならない。

関連するQ&A

  • 線形代数 行列の対角化とユニタリー行列について

    線形代数 行列の対角化とユニタリー行列について 行列Aをの固有値a1,a2,.....に対して固有ベクトルをv1,v2,.....とするとAを対角化する変換行列Pは P=(v1,v2,...)となりますよね?このとき対角化された行列は PAP^(-1)とP^(-1)APのどちらですか? 教科書によって違うので混乱しています。 また、Aが対角化可能かどうかは具体的にはどのように判断するんですか? というのも今までエルミート行列しか対角化したことなかったんです。 エルミート行列を対角化する変換行列はユニタリー行列であるという認識は正しいですか? ユニタリー行列の場合変換の際に基底の大きは保存されると思います。よって大きさが変わっていいならユニタリーでなくても対角化できそうなのですが。 一般的には対角化とエルミート行列とユニタリー行列の間にはどんな関係があるのでしょうか? 迷走した質問ですみません。よろしくお願いします。

  • ユニタリ行列って??

    ユニタリ行列ってなんですか?ユニタリを満たすと、量子力学や、線形代数学において、どのような意味をもつのでしょうか?行列の要素に簡単な数値を用いて説明してもらえるとうれしいです。 次の文章は、自分で調べてみたけど、いまいち意味がわからなかったことです。 複素正方行列をUとすると、そのエルミート共役がその逆数に等しいとき、ユニタリと呼ばれるんですか? U^†=U^(-1) (1)エルミート行列Aの対角要素は相似(ユニタリ)変換により、要約される。 D=U^†AU ここでUは列が行列Aの直交ベクトルであるユニタリ行列で、実数対角行列で、対角要素は行列Aの固有値である とありました。

  • 対角化不可能な4次正方行列

    行列A= (-1,0,0,1) (0,1,0,0) (0,0,1,0) (4,0,0,-1) について。 Aの固有値を求め、それぞれの固有値に対するAの固有空間の基底を一組求めよ。また、適当な正則行列Pを求めてp^(-1)APが対角行列になるようにせよ。 という問題がわかりません。 自分で計算したところ、λ=-3,1(3重解)と出ました。 λ=-3のとき、基底のひとつはt^(1,0,0,-2)と出ました。 問題はλ=1のときです。(1*E-A)を変形したときのランクは1で、未知数4だから4-1=3>0で対角化不可能です。 このときの固有ベクトルをt^(x,y,z,w)とするならば、z=2xという関係式から t^(1,0,0,2) t^(0,1,0,0) t^(0,0,1,0) を基底に選んだのですが、これは間違っているでしょうか? あと、この後どうやったらいいのかわかりません。 いま出した4つのベクトルを正規化して横に並べても、これはPにはならないですよね。 教えてください。

  • 正規行列の異なる固有値の固有ベクトルは直交する?

    Aを正規行列とすると適当な対角行列Λと適当なユニタリ行列Uが存在してU^*・A・U=Λである λとμを異なる固有値として Uの列ベクトルでありλの固有ベクトルであるベクトルが張るベクトル空間をPとし Uの列ベクトルでありμの固有ベクトルであるベクトルが張るベクトル空間をQとしたとき PとQは直交しλの固有ベクトルはPの元でありμの固有ベクトルはQの元であるから「λの固有ベクトルとμの固有ベクトルは直交する」 上の証明について質問します (1)結論は正しいですか? 正しければ (2)証明に穴はありますか? あれば (3)どのように証明したらいいでしょうか?

  • 固有値、対角行列の順

    2 -2 1 -1 3 -1 1 -2 2 といったような3*3行列があって正則行列Pを求め P^-1AP(対角行列)をもてめるのですが。 固有値は1、5で固有ベクトルが求まり、正則行列Pが 求まり、P^-1APもでます。 固有ベクトルが三つ(P1、P2、P3)出ますが、正則行列Pは左からP1、P3、P2みたいに順番はどうでもいいのでしょうか? またPが求まるとP^-1APは求まりますが、 α 0 0 0 β 0 0 0 γ  のようになって計算するとα=1、β=1、γ=5になります。が、これは固有値が並んでいまして、α、β、γの順が違っていても正解なのでしょうか? 例えば、5,1,1とか ご教授願います。

  • エルミート行列の対角化の証明

    証明 エルミート行列はユニタリー行列を使って固有値を対角要素とする対角行列にでき、その固有値は実数である。 いろいろ調べたんですが、この証明ができなくて、困っています。 よろしくおねがいします。

  • 行列の対角化について

    行列Aが与えられていてその行列の固有値、固有ベクトルを求め、Aを対角化せよという問題があったとして、その問題を解くときに まず固有値を求め、固有ベクトルを求めるところまではいいんですが、 対角化するというときに固有ベクトルから行列Pを求め、P-1AP = 対角行列という風にすると思うんですが、この場合P-1APは実際にP-1を求めて計算する必要があるんでしょうか? はじめから対角行列であるということがわかっているように普通に書いてもよいんでしょうか?

  • 線形代数 行列 対角化

    対角化について質問させて頂きます。 対角化とは、 「正方行列を適当な線形変換により、もとの行列と同値な 対角行列に帰着させること。」 と説明がありました。 ここで、同値とは具体的にどのような内容を指すのでしょうか? また、対角化を求める際、 正方行列Aに対してP^-1APとなる正則行列Pを求めます。 この正則行列Pは正方行列Aより求めた固有値に属する固有ベクトル を並べたものになりますが、これはなぜですか? なぜ、固有ベクトルを並べたものが正則行列Pになるのでしょうか? 以上、ご回答よろしくお願い致します。

  • ユニタリ行列と対角化について

    A= ( cosθ -sinθ) ( sinθ cosθ ) この2×2行列の固有値、固有ベクトルを求め ユニタリ行列Uを用いて対角化するというものなのですが まずdet(λE-A)=0 から λ=cosθ ± i|sinθ| が求まり そこから固有ベクトルを求めようとしたのですが sinθの正負で場合わけすると ひとつの固有値に対して固有ベクトルが二つでてきて それから先に進めません・・・。 通常の対角化と違うやり方をおこなわないといけないのでしょうか? 行列についてあまり詳しくないのでわかりやすく教えていただけるとうれしいです。 よろしくお願いしますm(__)m

  • 直行行列で対角化する問いについてお願いします。

    0 1 1 A=< 1 0 -1>を直行行列で対角せよ。 1 -1 1  A=Aの転置となる。Aの固有値λ=-√3 、√3、1で各固有ベクトルを求め、単位固有ベクトルを3本作り、直交行列を作ると、二重根号ばかりで求めた直交行列が合っているのかわかりません。 この問いはどのようになるのかご教授願います。