• 締切済み

確率の問題

1個のコインを投げることを繰り返し、表か裏のいずれかが3回出た時点で終了とするゲームを考える。 ただし、コインの表と裏の出る確率はそれぞれ1/2とする。 このとき、 (1)3回コインを投げた時点でゲームが終了する確率 (2)5回コインを投げた時点でゲームが終了する確率 (3)終了した時点で表の出た回数をnとする ・n=0となる確率 ・n=1となる確率 ・n=2となる確率 ・nの期待値 教えてください><お願いします!!!

noname#106174
noname#106174

みんなの回答

  • naniwacchi
  • ベストアンサー率47% (942/1970)
回答No.2

樹形図を書くことと同じようなことですが、まずゲームを想像してみてください。 (1)3回で終わるときの表裏のパターンはどうなりますか? (2)5回で終わるときの表裏のパターンはどうなりますか? ただし、単純に「表3回、裏2回」だけではだめです。 (3)n=0(何もしない)でゲームが終了することはありませんね。 n=1でも終了しませんね。以下、この要領で考えていきます。 逆に、10回もやれば・・・というか、そこまでやることがありますか?ということです。

  • sono0315
  • ベストアンサー率48% (85/177)
回答No.1

ヒント:樹形図書けばわかる

関連するQ&A

  • 確率の問題

    最初の持ち点が1で、コインを投げて表が出たら1点加点、裏が出たら1点減点というゲームを4回やる ただし途中で持ち点が0になったらその時点でゲームを終了とする このゲームにおいて、4回コインを投げることが出来る確率と、ゲームが終わったときの持ち点の期待値を求めよ 解き方を教えてください

  • 確率の問題で困ってます

    確率の問題で困ってます 表がでる確率p 裏がでる確率1-pのコインがあるとします。 表がでたとき高さ1のブロックを積み上げ、裏がでたときはそれを崩し0にするとします。 Ex. 試行回数 1     表  ブロックの高さ1 2     表   高さ2 3     裏   高さ0 4     表   高さ1 5     表   高さ2 6     表   高さ3 7     表   高さ4 8     裏   高さ0 9     裏  高さ0 10     表   高さ1 ・ ・ ・ ・ ・ 問題1.高さが5になったときは試行を終了するものとする。      n回目の試行で初めて高さが5となる確率P(n)は? (n>=5) 問題2.高さがmになったときは試行を終了するものとする。また本問題ではコインで     裏がでたとき、ブロックの高さが1以上ならば、高さを-1、高さが0ならばそのままとする。     n回の試行で高さが初めてmまで到達する確率Q(n)は? (n>m) 問題1では漸化式が思いつかず断念しました。計算で解けるものなのか疑問です。     

  • 確率の問題です

    確率の問題です。kを2以上の整数とする。硬貨を繰り返し投げて、表の出た回数がk回になるか、あるいは、裏の出た回数がk回になった時点で終了する (1)k≦n≦2k―1 を満たす整数nに対して、ちょうどn回で終了する確率Pnを求めよ (2)k≦n≦2k―2を満たす整数nに対して、Pn+1/Pnを求めよ (3)Pnの最大にするnを求めよ ちなみに解答は (1)Pn=(n―1)!/2^n―1(k―1)!(n―k)! (2) n/2(n+1―k) (3)n=2k―2、2k―1 です 全然わからないのでどなたか教えてください。よろしくお願いします。

  • 確率の問題が解けなくて困っています

    問題文は kを2以上の整数とする。硬貨を繰り返し投げて、表の出た回数がk回になるか、あるいは、裏の出た回数がk回になった時点で終了する。 k≦n≦2k-1を満たす整数nに対して、ちょうどn回で終了する確率p(n)を求めよ。 なのですが、自分の見解として  n回で終了する→n回投げてそのうちk回表or裏が出る→反復試行の確率の考えから nCk(1/2)*k(1/2)*(n-k)…(1)(*=累乗) でこの時kは不定で題の不等式を変形して (n+1)/2≦k≦n と考えこの間の確率の和がp(n)だから p(n)=2〔Σ(1)(k=0~n)-Σ(1){k=0~(n-1)/2}〕 =1-Σ(1){k=0~(n-1)/2}(1は二項定理から) で止まってしまいました。 正直なところ「根本的に間違ってるのでは? 」と感じていますが他に指針が立たないので、指針となるヒントまたは解法を教えてください。 追申:文体や表現が分かりにくくなってしまってすみません

  • 確率の問題です。

    コインを投げて、表が3回出たら(連続でなくてよい)A君の勝ち、裏が連続で2回出たらB君の勝ちとします。例えば表裏表裏表と出たら表が3回出たのでA君の勝ちで、この時点でゲームは終了、また、表裏裏と出たら裏が連続で2回出たのでB君の勝ちで、この時点でゲーム終了です。 このときA君、B君の勝つ確率はそれぞれどうなるでしょう? 朝から考えているのですが、どうしてもA君とB君の勝つ確率を足しても1にならなくて‥(><)

  • 確率の問題

    ずっと考えていますが、わかりません。どなたか教えてください。 問題:1枚の硬貨を繰り返し投げるとき、次の問いに答えよ。 (1)表が4回出るまで投げ続けるとするとき、何回目で作業が終了する確率がもっとも高いか。 (2)同じ面が4回出るまで続けるとするとき、作業が終了するまでにかかる回数の期待値を求めよ。 (1)については、n回目で作業が終わる確率をPnとすると、n-1回目で3回表が出ていると考えられ、n回目で表が出るとします。すると Pn-1=n-1C3x(1/2)^3x(1/2)^n-4 Pn=nC3x(1/2)~3x(1/2)^n-3 となるところまでわかりましたが、それからがわかりません。 よろしくお願いします。

  • 確率の問題です。

    対戦するA、B 2人が表裏の区別のあるコインを2枚ずつ持っている。 2人は持っているコインすべてを同時に投げ、表が出たらコインの枚数の多い方が少ない方にコインを1枚渡すというゲームを続けて3回行う。ただし、どちらかのコインがなくなったときにはゲームを終了する。ただし、確率をあらわすときは既約分数とする。 (1) 2回のゲームで終了する確率 (2) ゲーム終了時にAのコインの枚数がn枚である確率P(n)とすると、 P(0)= P(1)= P(2)= P(3)= P(4)= である。 これらの求め方を教えてください。 答えは、上から、 (1)5/128 (2)65/2048, 465/2048 , 247/512 , 465/2048, 65/2048 です。 詳しく解説お願いします!

  • 確率

    kを2以上の整数とする。硬貨を繰り返し投げて、表の出た回数がk回になるか、あるいは、裏の出た回数がk回になった時点で終了とする。 (1)k≦n≦2k-1を満たす整数nに対して、ちょうどn回で終了する確率P(n)を求めよ。 (2)k≦n≦2k-2を満たす整数nに対して、P(n+1)/P(n)を求めよ。 (3)P(n)を最大にするnを求めよ。 (1)はn-1回目までに表がk-1回出てn回目に表が出る場合とn-1回目までに裏がk-1回出てn回目に裏が出る場合に分けて求めた結果P(n)=(n-1)!/2{n-1}(k-1)!(n-k)!となりました。 (2)は(1)のP(n)からP(n+1)を求めて計算しようとしたのですが計算がよくわからなかったので教えてください。 (3)は(1)のP(n)で分母が最小かなと考えたのですができませんでした。 よろしくお願いします

  • 確率の問題です 

    確率の問題です  ある参考書の問題でわからなくて解答解説を見ようと思ったのですが載っていなかったので教えていただけないでしょうか。お願いします。  コインを何回も投げるときに初めて表が出るまでに出る裏の回数をTとし、n回目の表が出るまでに出る裏の回数をSnとする。(S1=T) なおコインの表が出る確率をp,裏が出る確率をq:=1-pとする。 1.Tの確率分布、平均、分散、2次モーメント、分散を求めよ 2.Tの確率母関数T(z)を求めよ。 3.Tは無記憶性を持つことを証明せよ。 4.Snの確率分布、平均、分散を求めよ。 5.Snの確率母関数Sn(z)を求めT(z)との関係を示せ。 6,E[Sn]:=λを一定に保ちながらn→∞とするときにSnの確率分布は平均λのポアソン分布に近づくことを示せ。

  • 確率の問題

    またまた質問があるので誰かお願いします。 「問題文」 n枚の硬貨を同時に投げて表の出たものを取り去り、1回後に、もしも硬貨が残っていれば残った硬貨をもう一度同時に投げて表の出たものを取り去ることにする。このとき全部なくなる確率を求めよ。 「模範解答」 n枚のコインを1、2、3~~~nというように区別をつけ1枚のコインを続けて2回投げることを1、2、3~~~~nの順に行う、と考える。 1枚のコインを2回投げたとき、そのコインがなくならない確率は1/2×1/2=1/4 。 よって1枚のコインを2回投げたとき、そのコインがなくなる確率は1-1/4=3/4 ゆえに1、2、3~~~nを同じことを続けると(3/4)^n となる。 となっています。なおn乗には 「^n」 の記号を使ってます。 質問したいことは題意を「n枚のコインを1、2、3~~~nというように区別をつけ1枚のコインを続けて2回投げることを1、2、3~~~~nの順に行う」という試行に読み替えることがどうして可能なのかということです。 同時になげる場合 「表(または裏)の枚数」しか問われない(??)のに対して言い換えた試行は「区別をつけているぶん区別のついた各コインのせいで場合の数も増えると思うのですが。