• ベストアンサー

偏微分の基本

いつもお世話になっております。 今回は馬鹿らしい質問です。 直交座標と極座標との関係において ∂r/∂x を求めます。 これはr=√(x^2+y^2)から cos(θ)となりますよね。 ところでx=r*Cos(θ) をrについて解いてやると1/cos(θ)となりますが、 これは変数の対応関係を無視しているので駄目ですよね。 他に、 x=r*Cos(θ)において∂x/∂r=Cos(θ) としてから逆関数を求めてみるとこれも1/cos(θ) となります。 情けないですが、人にどこが間違っているのか説明できません。 すごいもやもやしているのでどなたか教えていただけないでしょうか。

質問者が選んだベストアンサー

  • ベストアンサー
  • rabbit_cat
  • ベストアンサー率40% (829/2062)
回答No.1

r = x/cosθ = f(x,θ) とおくと、rだけではなくて、θもxの関数です。 なんで、 ∂r/∂x = ∂f/∂x + ∂f/∂θ×∂θ/∂x = 1/cosθ -x・tanθ/cosθ・(-sinθ/r) = cosθ です。 ちなみに、偏微分の場合には、 ∂x/∂r = 1/(∂r/∂x) は(一般には)成り立ちません。

shin-mind
質問者

お礼

なるほど、よく考えたらそうでした。 すっきりしました。 ありがとうございます。

その他の回答 (1)

  • arrysthmia
  • ベストアンサー率38% (442/1154)
回答No.2

偏微分では、どの変数で微分したのか? もさながら、 どの変数を固定して微分したのか? が重要です。 r を、x と θ の2変数関数と見て θ を固定して x について微分するならば、 ∂r/∂x[θを固定] = ∂/∂x[θを固定] (x/cosθ) = 1/cosθ で正解です。 ∂/∂x に「y を固定して微分」という意味を持たせたいなら、 y = r sinθ という関係式により、θ は x に従属しますから、 ∂r/∂x[yを固定] = (∂r/∂x[θを固定])(∂x/∂x[yを固定]) + (∂r/∂θ[xを固定])(∂θ/∂x[yを固定]) = (∂r/∂x[θを固定]) + (∂r/∂θ[xを固定])(∂θ/∂x[yを固定]) となります。 ∂r/∂x[θを固定] と ∂r/∂θ[xを固定] は、r = x/cosθ から、 ∂θ/∂x[yを固定] は、y = r sinθ から、求めることができます。 ∂θ/∂x[yを固定] = 0、 ∂/∂x[yを固定] (r sinθ) = (∂r/∂x[yを固定])(sinθ) + r(cosθ)(∂θ/∂x[yを固定]) より、 ∂θ/∂x[yを固定] = (-1/r)(tanθ)(∂r/∂x[yを固定]) です。 これを、上の式へ代入して…

shin-mind
質問者

お礼

う~ん、場合によって指示の意味が変わるということですね。 ありがとうございました。

関連するQ&A

  • 偏微分について

    偏微分をこの前習ったのですが、いまいちよく分かりません><どなたか手助けお願いいたします。 位置ベクトルrの独立変数はデカルト座標(x,y,z)で、 Δr/Δx=lim {r(x+Δx,y,z)-r(x,y,z)}/ Δx と、これでよいのでしょうか??(極限はΔx→0です) またデカルト座標(x,y,z)、極座標(r,θ,Φ)について、デカルト座標を極座標の関数とし、または極座標をデカルト座標の関数として偏微分を行うときに、 Δx/Δθ=rcosθ×cosΦ Δy/ΔΦ=rsinθ×cosΦ Δz/Δr=cosθ でよいのでしょうか?? あと、これの逆の Δr/Δy,Δθ/Δz,ΔΦ/Δx のやり方が分かりません。 どなたかよろしくお願いいたします。

  • 偏微分について急いで教えてください

    (1) (x,y,z)と(ξ,η,ζ)は原点を共有する直交座標系とする。x,y,zの関数 uについて (∂^2)u/(∂x^2)+(∂^2)u/(∂y^2)+(∂^2)u/(∂z^2) の独立変数をξ,η,ζに変更せよ。 (2) uをx,y,zの関数とし、球座標変換 x=rsinφcosΘ y=rsinφsinΘ z=rcosφ このとき(∂^2)u/(∂x^2)+(∂^2)u/(∂y^2)+(∂^2)u/(∂z^2)の独立変数 r,φ,Θに変更せよ。(r≧0, 0≦φ≦π, 0≦Θ≦2π)

  • 極座標の偏微分

    二次元直交座標と極座標の関係が x=rcosφ y=rsinφ で表されるとき、∂r/∂x を求めたいのですが、 x=rcosφからr=x/cosφとしてrをxで偏微分すると1/cosφ=r/x となり、 r^2=x^2+y^2からr=√x^2+y^2 としてrをxで偏微分するとx/r となってしまうのですが、 どちらが正しいのですか???

  • 偏微分

    次の偏微分を求めよ。ただし(1)-(3)ではデカルト座標xyzを極座標rθΦの関数とし、(4)-(6)では極座標rθΦをデカルト座標xyzの関数として微分を行うこと。 (1)Δx/Δθ=rcosθ×cosΦ (2)Δy/ΔΦ=rsinθ×cosΦ (3)Δz/Δr=cosθ これでよいでしょうか・・・?? (4)Δr/Δy=y/√(x^2+y^2+z^2)=y/r (5)Δθ/Δz (6)ΔΦ/Δx (5)(6)がまったく分かりません^^;たとえば、(5)ではtanθを微分したらよいのでしょうか?? よろしくお願いします。

  • 偏微分の問題

    物理学基礎論で、偏微分を習いましたがよく分かりません>< 今朝、数学のジャンルで質問させていただきましたが、質問の意味が分からないと言われたので、問題ごとこちらに質問させていただきます。 1、次の偏微分を求めよ。ただし位置ベクトルrの独立変数はデカルト座標(x,y,z)である。 ∂r/∂x これに対し私の答えは・・・ Δr/Δx=lim {r(x+Δx,y,z)-r(x,y,z)}/ Δx と、これでよいのでしょうか??(極限はΔx→0です) 2、次の偏微分を求めよ。ただし()-()ではデカルト座標xyzを極座標rθΦの関数とし、()-()では極座標rθΦをデカルト座標xyzの関数として微分を行うこと。 ()Δx/Δθ=rcosθ×cosΦ ()Δy/ΔΦ=rsinθ×cosΦ ()Δz/Δr=cosθ これでよいでしょうか・・・?? ()Δr/Δy=y/√(x^2+y^2+z^2)=y/r ()Δθ/Δz ()ΔΦ/Δx ()()がまったく分かりません^^;たとえば、()ではtanθを微分したらよいのでしょうか?? どなたかよろしくお願いいたします。

  • 極座標と直交座標

    「極座標で表したときの(r,θ)=(√5+1,Π/10)なる点を直交座標(x,y)であらわせ。ただし、cos,sin,tanなどの三角関数記号を用いずにあらわすこと」という問題です。 がんばって解いてみました。 x=rcosθ,y=rsinθより、 x=(√5+1)cos(Π/10),y=(√5+1)sin(Π/10) ここでsin(Π/10)=(√5-1)/4 なので(計算済み) y=1 さらにcos(Π/10)=)=√(10+2√5)なので(これも計算済み)  x=5√2+√(10√5)+√(10+2√5) ???? yはともかく、xはこんな変な値になってしまってよいのでしょうか?

  • 積分の変数変換について

     積分の変数変換に関する質問です。一番簡単な直交座標から極座標への変換を例にします。   x = x(r,θ) = rcosθ.   y = y(r,θ) = rsinθ. であるとき f(x,y) = 1 を x^2 + y^2 ≦ R^2 という円内を積分領域して積分すれば   ∫∫f(x,y)dxdy = ∫∫dxdy = ∫∫rdrdθ ・・・・・・ (#) となり円の面積が求められます。つまり直交座標から極座標に変換して積分するときは   dxdy →drdθ ではなく、   dxdy →rdrdθ としなければならないと、どんな参考書にも書いてあります。つまり r を余分に付け加えるわけですが、これは   ┌ ┐ ┌       ┐┌  ┐   |dx|=|cosθ -rsinθ||dr |   |dy| |sinθ  rcosθ||dθ|   └ ┘ └       ┘└  ┘   |J| =|cosθ -rsinθ|= rcos^2θ- (-rsin^2θ) = r      |sinθ  rcosθ| のように行列式|J|でも求めることができ、|J|をヤコビアンと呼ぶということも参考書に載っています。  一方で   rdrdθ= rdθ*dr は極座標における面積要素ですから(#)の変換は直感的にも納得できます。θは角度ですから drdθでは面積になれないわけです。(#)は具体的には   ∫[0~2π]∫[0~R]rdrdθ で計算できます。この式だけじーっと見ていると、いつのまにか r とθが極座標の変数であることが忘れ(笑)、あたかもθを縦軸、r を横軸とする '直交座標' において関数 θ= r を積分していると見なせます。  で、ここからが質問なのですが・・・  直交座標から任意の座標に変数変換して積分するということは、結局のところ、その任意の座標を直交座標と見なして計算することであると考えてよいのでしょうか?  たとえば   x = x(u,v,w)   y = y(u,v,w)   z = z(u,v,w)   ┌  ┐  ┌        ┐┌ ┐   |dx| |∂x/∂u ∂x/∂v ∂x/∂w ||du|   |dy|=|∂y/∂u ∂y/∂v ∂x/∂w||dv|   |dz| |∂z/∂u ∂z/∂v ∂z/∂w||dw|   └ ┘  └         ┘└ ┘     |∂x/∂u ∂x/∂v ∂x/∂w|   |J| =|∂y/∂u ∂y/∂v ∂x/∂w|     |∂z/∂u ∂z/∂v ∂z/∂w| であるとき   dxdydz = |J|dudvdw という変数変換は、 u、v、w がどんな座標の変数であれ、最終的には u、v、w の '直交座標' で計算することであると考えてよいのかということです。  任意の座標同士の変数変換というのはどうなるのでしょうね。ちょっと想像しかねます。

  • 合成関数の偏微分

    z=f(x,y)で  x=rcosθ y=rsinθ としたとき ∂z/∂r = cosθ(∂z/∂x) + sinθ(∂z/∂y)  ∂z/∂θ = r×{-sinθ(∂z/∂x) + cosθ(∂z/∂y)} となりますよね。 次にこれらを ∂z/∂r = P   ∂z/∂θ = Q  とおいて 2階偏導関数 ∂P/∂r = (∂P/∂x)(∂x/∂r) + (∂P/∂y)(∂y/∂r)  ∂Q/∂θ = (∂Q/∂x)(∂x/∂θ) + (∂Q/∂y)(∂y/∂θ)  を求めたいのですが ∂P/∂x や  ∂Q/∂x を求めるときに cosθ(∂z/∂x) についている cosθ や r×{-sinθ(∂z/∂x) + cosθ(∂z/∂y)} についている r は 定数として扱うべきなのでしょうか?それとも変数とみて積の微分法を 用いればよいのでしょうか? 考えてみれば cosθ = x/r で (x,r)の関数ですから cosθは xで偏微分できそうですし r=x/cosθ で (x,θ)の関数ですから rも偏微分できそうです。 しかし解答をみる限りでは偏微分していません。 誰か教えていただけるとありがたいです。

  • 合成関数の偏微分について

    z=f(x,y)で  x=rcosθ y=rsinθ と置いたとき ∂z/∂r = cosθ(∂z/∂x) + sinθ(∂z/∂y)  ∂z/∂θ = r×{-sinθ(∂z/∂x) + cosθ(∂z/∂y)} となりますよね。 次にこれらを ∂z/∂r = P   ∂z/∂θ = Q  とおいて 2階偏導関数 ∂P/∂r = (∂P/∂x)(∂x/∂r) + (∂P/∂y)(∂y/∂r)  ∂Q/∂θ = (∂Q/∂x)(∂x/∂θ) + (∂Q/∂y)(∂y/∂θ)  を求めたいのですが ∂P/∂x や  ∂Q/∂x を求めるときに cosθ(∂z/∂x) についている cosθ や r×{-sinθ(∂z/∂x) + cosθ(∂z/∂y)} についている r は 定数として扱うべきなのでしょうか?それとも変数とみて積の微分法を 用いればよいのでしょうか? 考えてみれば cosθ = x/r で (x,r)の関数ですから cosθは xで偏微分できそうですし r=x/cosθ で (x,θ)の関数ですから rも偏微分できそうです。 しかし解答をみる限りではいずれも定数として扱われているようです 何故だかさっぱりわかりません。 どなたか知恵を貸していただけるとありがたいです。

  • 二次曲線

    (1)極方程式r(1+√3/3cosθ)=2√3/3の直交座標の方程式で表せ。 (2)(1)の曲線の焦点の座標を直交座標で求めよ r=√(x^2+y^2) X=rcosθ代入…???