• ベストアンサー
  • すぐに回答を!

極座標の偏微分

二次元直交座標と極座標の関係が x=rcosφ y=rsinφ で表されるとき、∂r/∂x を求めたいのですが、 x=rcosφからr=x/cosφとしてrをxで偏微分すると1/cosφ=r/x となり、 r^2=x^2+y^2からr=√x^2+y^2 としてrをxで偏微分するとx/r となってしまうのですが、 どちらが正しいのですか???

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数1395
  • ありがとう数4

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3

#1のものです。 >yも、φを媒介変数として、xと独立ではないように思えるのですが・・・ ここで考えているのは直交座標で表されているものと極座標で表されているものの関係を考えています。 直交座標で使われる座標は(x,y)でありxとyが独立に存在します。 極座標で表す場合はrとφが独立な変数です。 (物理屋さんなら自由度といったほうが通りがよいでしょうか) 質問者のおっしゃられるようにyをφを媒介して、ととることもできますが、その場合は独立な変数は(x,φ)の組み合わせとなり、∂r/∂x=1/cosφとなります。 ただ、普通(x,φ)で座標を表すことはありません。というよりもこの二つで平面上のすべての点をあらわすことはできません。(y軸上の点を表現することができません。)ですので(x,φ)で座標で表すことはしません。 (y,r)の組で表現するのもしません。この情報だけで位置を一意的に決定することができないからです。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

なるほど、納得いたしました、 ありがとうございました!

その他の回答 (2)

  • 回答No.2

偏微分ですから,何を一定にして微分するかを考えてください。 熱力学で行われているように一定にする変数を明示すると ∂r/∂x = (∂r/∂x)y で,一定にする変数はyです。一方, >r=x/cosφとしてrをxで偏微分すると1/cosφ=r/x となり、 この計算ではφが定数扱いですから (∂r/∂x)φ = 1/cosφ という微分をしていることになります。 rをx,yの関数と考えるとφもx,yの関数ですから r(x,y)=x/cosφ(x,y) これをy一定の条件でxで微分しないといけません。 この微分を実際に実行するとANo.1さんの下から2行目になります。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございました!

  • 回答No.1

この場合、後者になります。 偏微分する場合、xに対して独立に変化する変数を定数とみなします。 φはxと独立ではないため r=x/cosφ をxで偏微分すると ∂r/∂x=1/cosφ+xsinφ/(cosφ)^2*(∂φ/∂x) となります。

共感・感謝の気持ちを伝えよう!

質問者からの補足

yも、φを媒介変数として、xと独立ではないように思えるのですが・・・

関連するQ&A

  • 偏微分と極座標

    偏微分と極座標 (∂^2) f (x,y)/∂x^2 + (∂^2) f (x,y)/∂y^2 から 極座標表示 x=rcosθ,y=rsinθ を用いて [ ∂^2/∂r^2 +(1/r)(∂/∂r) + (1/r^2)(∂^2/∂θ^2) ] f (r,θ) を導くという課題なのですが、見当がつかず困っています。 どなたかご教授頂けないでしょうか?よろしくお願いします。 ∂z/∂u = (∂z/∂x)(∂x/∂u) + (∂z/∂y)(∂y/∂u) ∂z/∂v = (∂z/∂x)(∂x/∂v) + (∂z/∂y)(∂y/∂v) を用いるのでしょうか?

  • 偏微分

    次の偏微分を求めよ。ただし(1)-(3)ではデカルト座標xyzを極座標rθΦの関数とし、(4)-(6)では極座標rθΦをデカルト座標xyzの関数として微分を行うこと。 (1)Δx/Δθ=rcosθ×cosΦ (2)Δy/ΔΦ=rsinθ×cosΦ (3)Δz/Δr=cosθ これでよいでしょうか・・・?? (4)Δr/Δy=y/√(x^2+y^2+z^2)=y/r (5)Δθ/Δz (6)ΔΦ/Δx (5)(6)がまったく分かりません^^;たとえば、(5)ではtanθを微分したらよいのでしょうか?? よろしくお願いします。

  • 偏微分について

    偏微分をこの前習ったのですが、いまいちよく分かりません><どなたか手助けお願いいたします。 位置ベクトルrの独立変数はデカルト座標(x,y,z)で、 Δr/Δx=lim {r(x+Δx,y,z)-r(x,y,z)}/ Δx と、これでよいのでしょうか??(極限はΔx→0です) またデカルト座標(x,y,z)、極座標(r,θ,Φ)について、デカルト座標を極座標の関数とし、または極座標をデカルト座標の関数として偏微分を行うときに、 Δx/Δθ=rcosθ×cosΦ Δy/ΔΦ=rsinθ×cosΦ Δz/Δr=cosθ でよいのでしょうか?? あと、これの逆の Δr/Δy,Δθ/Δz,ΔΦ/Δx のやり方が分かりません。 どなたかよろしくお願いいたします。

  • ラプラシアンの極座標表示について

    化学系の学部にいるので数学は不得意なのですが,誰か教えて下さい。 ラプラシアンを2次元直交座標から2次元極座標に変換する場合 直交座標(x,y),極座標(r,θ)とすると, x=rcosθ,y=rsinθ・・・(1)からδ/δx,δ/δyを求める時,参考書によると r^2=x^2+y^2,tanθ=y/x・・・(2) δ/δx=(δ/δr)(δr/δx)+(δ/δθ)(δθ/δx) δ/δy=(δ/δr)(δr/δy)+(δ/δθ)(δθ/δy)・・・(3) (2)をxで微分すると 2r(δr/δx)=2x=2rsinθ (1/(cosθ)^2)(δθ/δx)=-(y/x^2)=-(sinθ/r(cosθ)^2) より δr/δx=cosθ,δθ/δx=-(1/r)sinθ 同様に δr/δy=sinθ,δθ/δy=(1/r)cosθ 以上の関係を(3)に入れれば, δ/δx=cosθ(δ/δr)-(1/r)sinθ(δ/δθ) δ/δy=sinθ(δ/δr)+(1/r)cosθ(δ/δθ)となります。 これで,合っていいるのですが,初めて,私がこの問題を考えた時, (1)をそれぞれ,rとθで偏微分しました。 δr/δx=1/cosθ,δθ/δx=-(1/rsinθ) δr/δy=1/sinθ,δθ/δx=(1/rcosθ)となりsinθ,cosθの項が 正解と逆転してしまい,異なる結果となってしまいました。 私は,どちらの方法でも同じになると思っていたのですが, どうして,違うのですか誰か分かりやすく教えて下さい。

  • 偏微分の問題

    物理学基礎論で、偏微分を習いましたがよく分かりません>< 今朝、数学のジャンルで質問させていただきましたが、質問の意味が分からないと言われたので、問題ごとこちらに質問させていただきます。 1、次の偏微分を求めよ。ただし位置ベクトルrの独立変数はデカルト座標(x,y,z)である。 ∂r/∂x これに対し私の答えは・・・ Δr/Δx=lim {r(x+Δx,y,z)-r(x,y,z)}/ Δx と、これでよいのでしょうか??(極限はΔx→0です) 2、次の偏微分を求めよ。ただし()-()ではデカルト座標xyzを極座標rθΦの関数とし、()-()では極座標rθΦをデカルト座標xyzの関数として微分を行うこと。 ()Δx/Δθ=rcosθ×cosΦ ()Δy/ΔΦ=rsinθ×cosΦ ()Δz/Δr=cosθ これでよいでしょうか・・・?? ()Δr/Δy=y/√(x^2+y^2+z^2)=y/r ()Δθ/Δz ()ΔΦ/Δx ()()がまったく分かりません^^;たとえば、()ではtanθを微分したらよいのでしょうか?? どなたかよろしくお願いいたします。

  • 偏微分の問題です

    偏微分の問題です z=f(x,y) x=rcosθ y=rsinθ について、Z[x]とZ[xx] (zのxについての、1階偏微分と2階偏微分) をr,θ,Z[r],Z[θ]を用いて表したいのですが、後者のほうがわからなくて困っています。 前者は自分で計算したところ Zのxでの1階偏微分 Z[x] = Z[r] cosθ - 1/z * Z[θ] sin(θ) となりました。これもあっているか不安です。どなたか教えていただけると嬉しいです。

  • 偏微分について急いで教えてください

    (1) (x,y,z)と(ξ,η,ζ)は原点を共有する直交座標系とする。x,y,zの関数 uについて (∂^2)u/(∂x^2)+(∂^2)u/(∂y^2)+(∂^2)u/(∂z^2) の独立変数をξ,η,ζに変更せよ。 (2) uをx,y,zの関数とし、球座標変換 x=rsinφcosΘ y=rsinφsinΘ z=rcosφ このとき(∂^2)u/(∂x^2)+(∂^2)u/(∂y^2)+(∂^2)u/(∂z^2)の独立変数 r,φ,Θに変更せよ。(r≧0, 0≦φ≦π, 0≦Θ≦2π)

  • 偏微分の問題について

    偏微分の問題で、 Z=e^(x^2+y^2) x=rcosθ 、 y=rsinθ に対してZr、Zθ を求めよ。 という問題でどうしても答えがでません。 どなたか教えてください。よろしくお願いします。

  • 合成関数の偏微分

    z=f(x,y)で  x=rcosθ y=rsinθ としたとき ∂z/∂r = cosθ(∂z/∂x) + sinθ(∂z/∂y)  ∂z/∂θ = r×{-sinθ(∂z/∂x) + cosθ(∂z/∂y)} となりますよね。 次にこれらを ∂z/∂r = P   ∂z/∂θ = Q  とおいて 2階偏導関数 ∂P/∂r = (∂P/∂x)(∂x/∂r) + (∂P/∂y)(∂y/∂r)  ∂Q/∂θ = (∂Q/∂x)(∂x/∂θ) + (∂Q/∂y)(∂y/∂θ)  を求めたいのですが ∂P/∂x や  ∂Q/∂x を求めるときに cosθ(∂z/∂x) についている cosθ や r×{-sinθ(∂z/∂x) + cosθ(∂z/∂y)} についている r は 定数として扱うべきなのでしょうか?それとも変数とみて積の微分法を 用いればよいのでしょうか? 考えてみれば cosθ = x/r で (x,r)の関数ですから cosθは xで偏微分できそうですし r=x/cosθ で (x,θ)の関数ですから rも偏微分できそうです。 しかし解答をみる限りでは偏微分していません。 誰か教えていただけるとありがたいです。

  • 合成関数の偏微分について

    z=f(x,y)で  x=rcosθ y=rsinθ と置いたとき ∂z/∂r = cosθ(∂z/∂x) + sinθ(∂z/∂y)  ∂z/∂θ = r×{-sinθ(∂z/∂x) + cosθ(∂z/∂y)} となりますよね。 次にこれらを ∂z/∂r = P   ∂z/∂θ = Q  とおいて 2階偏導関数 ∂P/∂r = (∂P/∂x)(∂x/∂r) + (∂P/∂y)(∂y/∂r)  ∂Q/∂θ = (∂Q/∂x)(∂x/∂θ) + (∂Q/∂y)(∂y/∂θ)  を求めたいのですが ∂P/∂x や  ∂Q/∂x を求めるときに cosθ(∂z/∂x) についている cosθ や r×{-sinθ(∂z/∂x) + cosθ(∂z/∂y)} についている r は 定数として扱うべきなのでしょうか?それとも変数とみて積の微分法を 用いればよいのでしょうか? 考えてみれば cosθ = x/r で (x,r)の関数ですから cosθは xで偏微分できそうですし r=x/cosθ で (x,θ)の関数ですから rも偏微分できそうです。 しかし解答をみる限りではいずれも定数として扱われているようです 何故だかさっぱりわかりません。 どなたか知恵を貸していただけるとありがたいです。