• 締切済み
  • すぐに回答を!

慣性抵抗

時刻tで質量mの物体がX軸正符号の向きに運動している。この物体には、大きさが速度の大きさに2乗に比例し、向きが物体の速度の向きと常に逆向きになる慣性抵抗のみが作用する。以下の問に答えなさい。なお、単位質量当たりの慣性抵抗の比例係数はβとし、速度はv(t)i(ベクトル)で表すこと。 1)時刻tでこの物体に作用する力Fを、X軸正符号の向きに単位ベクトルをi(ベクトル)として、表しなさい。 2)時刻tでのこの物体の加速度a(t)を、v(t)とX軸正符号の向きの単位ベクトルiを用いて表しなさい。 長文ですいません。詳しく解いていただくと助かります。 よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 物理学
  • 回答数1
  • 閲覧数773
  • ありがとう数2

みんなの回答

  • 回答No.1
noname#137826
noname#137826

(1) 慣性抵抗の大きさは βv(t)^2 ですね。 そして、物体はx軸正方向に運動しているのですから、慣性抵抗の向きはx軸負方向です。 これらのことから F = -βv(t)^2i が得られます。 (2) 慣性抵抗のみが働くのですから、運動方程式は ma(t) = -βv(t)^2i となります。両辺を m で割れば求めるべきものが得られます。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございました。 最終的には2)はa(t)=-βv(t)^2/mとなるんですよね?

関連するQ&A

  • 慣性抵抗

    時刻tで質量mの物体がX軸正符号の向きに運動している。この物体には、大きさが速度の大きさに2乗に比例し、向きが物体の速度の向きと常に逆向きになる慣性抵抗のみが作用する。以下の問に答えなさい。なお、単位質量当たりの慣性抵抗の比例係数はβとし、速度はv(t)i(ベクトル)で表すこと。 1)時刻tでこの物体に作用する力Fを、X軸正符号の向きに単位ベクトルをi(ベクトル)として、表しなさい。 2)時刻tでのこの物体の加速度a(t)を、v(t)とX軸正符号の向きの単位ベクトルiを用いて表しなさい。 長文ですいません。詳しく解いていただくと助かります。 よろしくお願いします。

  • 慣性抵抗

    時刻t=0で十分高い位置にある質量mの物体を速度が0(ベクトル)となるようにそっと放した。この物体には地表付近の重力と物体の速度の大きさの2乗に比例する慣性抵抗が作用する。以下の問に答えよ。 なお、重力加速度の大きさはg、単位質量あたりの慣性抵抗の比例定数はβとし、鉛直方向下向きの単位ベクトルをiベクトル、落下している物体の時刻t≠0での速度をv(t)i(ベクトル)とする。 1)この物体に作用する慣性抵抗Fbを文中の記号であらわせ。 2)この物体に作用する力の総和Fを文中の記号であらわせ。 3)この物体の加速度a(t)を文中の記号であらわせ。 4)この物体の時刻tでの運動方程式(ma(t)=F)を文中の記号であらわせ。 5)4)で求めた運動方程式を微分方程式と考えて解き、この物体の時刻tでの速度を表すv(t)を時間tの関数としてあらわせ。 解く途中経過も示すこと。 6)時刻tが十分経過(t→∞)した場合、この物体の速度を表す関数v(t)はどうなるか、示しなさい。 自分の考えだと 1)はFb=-βv^2i(ベクトル) 2)はF=mgi-mβv^2i(ベクトル) 3)はma(t)=mgi-mβv^2i    a(t)=gi-βv^2i までは出来たと思うんですけど、4)~6)がよくわからないので 解き方を教えてください。

  • 慣性モーメントについて教えてください!!

    慣性モーメントについて教えてください!! 慣性力I1,質量m1の物体に回転軸から距離r1(重心位置)を加速度aで動かしたものと、 慣性力I2,質量m2の物体に回転軸から距離r2(重心位置)を加速度aで動かしたものでどちらが早く1回転するかが求められません。 F=ma,N=Ia式から求めれるのでしょうか。 また、回転軸にトルクT1がかかっている場合はどうなるのでしょうか。 分かりにくい質問で申し訳ないですが、宜しくお願いします。

  • 空気抵抗の問題です(高校・大学1年レベル)

    物体が原点Oから斜めに打ち上げられた。ただし物体が速度に比例する抵抗(比例定数n>0)を受けるものとする。また、水平方向右向きにx軸、鉛直上向きにy軸をとるとする。 (1)物体の位置ベクトル↑r、物体に作用する重力↑wとして物体の運動方程式を求めよ (2)物体の質量をm、重力加速度の大きさをg、x方向の速度成分をu、y方向の速度成分をvとしたとき、x方向、y方向に関する運動方程式を書きなさい (3)x(0)=0,u(0)=u。の時、x,uを時間tの関数として求めよ (4)y(0)=0,v(0)=v。の時、y,vを時間tの関数として求めよ (5)物体の軌跡(xとyの関係式)を求めよ なんですが解き方と答えを教えてください!お願いします

  • 物理で、いくつかわからない問題があります。

    物理で、いくつかわからない問題があります。 1)x軸の正の向きに速度20m/sで運動している質量m=2.00kgの物体に t=0.0からx軸の負の向きに一定の力F=10Nが作用し続けた。 このとき物体の加速度、物体が静止する時間を求めなさい。 2)質量mの物体に重力と速度に比例する摩擦力(比例定数をγとする)がはたらくときの 運動方程式を書きなさい。ただし左辺は速度についての微分の式にすること。 3)二つの物体AとBの間の万有引力Fを、F=-D(r)rと書くとする。 このときのD(r)を求めなさい。ただし、物体AとBの質量をそれぞれMA,MBとし、 距離をr、万有引力定数をGとする。 という問題の解き方がわかりません。(たくさんすみません… どれか一つでもいいのでわかる方、どうか教えてください。

  • 抵抗力のある放物運動

    わからない問題があります、解法を教えてください。 地面から高さhの所から質量mの物体を水平方向に速度Voで投げた。物体は速度Vに比例する抵抗力-mγv(γ>0)を受ける。 (1)水平方向をx方向、鉛直方向をy軸の正方向として、物体の速度ベクトル(Vx,Vy)を投げてからの時間tの関数として求める。 (2)十分時間がたったときの物体の速度ベクトル(Vx,Vy)を求める。 答えは(1)[Voe^(-γt),g(e^(γt)-1)/γ] (2)[0,-g/γ]です。 ------------------------------------------------------- 一応解いてみたがいつlogが使われているのかわかりません m* dVx/dt = -mγVx・・・水平方向 m* dVy/dt = -mg*mγVy・・・鉛直方向 とおきました。 ------------------------------------------------------- そして(2)のxはどうして0なのですか? tを無限大までリミットを取るとe^(-γt)=0になるからですか? わかりずらくてすみません。

  • 物体の慣性主軸

    3次元形状が分かっている(質量分布がわかっている)物体について、その物体に 力を加えた際に、最終的に安定して回転する回転軸を見つけたいと考えています。 色々調べていくと、慣性主軸なるものを求めるらしいのですが、手順として 1. 適当に3軸を決める 2. 3軸より3x3の慣性行列を求める 3. 慣性行列を対角化し、対角化成分が回転軸の(重心からの)方向を表わす 慣性主軸である という考えでよろしいのでしょうか?

  • 位置ベクトル

    xy平面の直線y=b上を物体Pがx軸負方向に速さVで移動している。以下では、x軸の正方向を向く単位ベクトルをex、y軸の正方向を向く単位ベクトルをeyとし、時刻t=0で物体Pのx座標値がx=aであったとする。 速さVが一定であるとき、時刻tにおける物体Pの位置ベクトルr(t)をexとeyを用いて表せ。 全くわかりません。 詳しい解説お願いします。

  • 力学(抵抗力について)

    鉛直上向きにy軸をとり、重力加速度の大きさをgとする。時刻t=0に位置y=y(0)から質量mの物体を鉛直下向きに初速度v(0) (v(0)<0)で放り投げた。物体には、速度vに比例する抵抗力 -bv が働く。 1.運動方程式をvの微分方程式として書き出せ。 2.終端速度の大きさv(t)を求めよ。 3.運動方程式を解いて、t >0におけるv(t).y(t)を求めよ 4.y(0)=0、v(0)=-3v(t)/2 の時、十分時間がたったときのv(t),y(t)の漸近線を求めよ。 問題数多いですが、簡単でいいので途中式もお願いします。

  • 慣性モーメント,回転半径とは?

    慣性モーメントとは質量mなる物体の微小部分び質量をdmその部分と特定の軸Aとの距離をrとするときr^2とdmの積の物体の全部分についての総和を軸Aに関する慣性モーメントと言う。 これが本にある定義です。 ここで∫r^2dmの次元はm^2・kgですよね? 曲げモーメントやその他のモーメントは次元がNmです。 次元が全く違うのになぜモーメントという名がついてるのでしょうか? また慣性とついてるのはなぜでしょうか? それと 物体の全質量をMとすると軸からkの距離に全質量が集まったと考えれば 慣性モーメントI=Mk^2となり kを回転半径という。 これが回転半径の定義と本にはあります。 なぜこれが回転半径なんでしょうか? どなたかお願いします。