凸関数とは?その性質と連続性について

このQ&Aのポイント
  • 凸関数は定義区間の内部の各点で連続であり、右側微分と左側微分を持ちます。
  • 凸関数の定義から、任意の点での接線の傾きは単調減少しています。
  • D^(-)yとD^(+)yが存在することから、凸関数は連続であると言えます。
回答を見る
  • ベストアンサー

凸関数がわかりません…

凸関数は定義区間の内部の各点で連続で,右側微分と左側微分を持つ。 実際、 x_1<x<x_2とすれば (y-y_1)/(x-x_1)≦(y_2-y)/(x_2-x) 今xとx_1を固定すれば (y_2-y)/(x_2-x)は単調減少で下に有界より lim(y_2-y)/(x_2-x) =D^(+)yが存在 同様に lim(y-y_1)/(x-x_1) =D^(-)yも存在し D^(-)y≦D^(+)y ※D^(-)yとD^(+)yはそれぞれ左側微分右側微分の意 と…ここまではわかったのですが、最後にある一文 「D^(-)yとD^(+)yが存在するからyは連続である」 が何故だかわかりません。 D^(-)yとD^(+)yが存在したからといって、連続だとは言えないのではないですか? どうして連続だと言えるのかが全くわからず困ってます… どなたか詳しい方回答よろしくお願い致しますm(__)m

noname#87373
noname#87373

質問者が選んだベストアンサー

  • ベストアンサー
  • gef00675
  • ベストアンサー率56% (57/100)
回答No.1

定義から直ちに、 左側微分可能なら、左側連続、 右側微分可能なら、右側連続になる。 右からも左からも連続なので、連続になる。

noname#87373
質問者

補足

回答ありがとうございます! ちょっとありえない勘違いをしてました…(汗 でも解決しました。ありがとうございます。

関連するQ&A

  • 凸関数

    問題 z=(x^2+y^2)^(1/2)が凸関数であることを証明せよ。 という問題なんですが、方針がわかりません。偏微分とか使うんでしょうか?よろしくお願いします。

  • 至る所微分不可能な凸関数について

    至る所微分不可能な下に凸な連続関数は存在しますか?

  • 凸関数は連続的微分可能?

    私は専攻が物理な門外漢なので、表現に不備がありまくりだと思うのですが、何とかよろしくお願い致します。 上に凸の関数が  f(λa+(1-λ)b) ≧ λf(a) + (a-λ)f(b)  a,b は任意の実数 λは 0<λ<1 を満たす任意の実数 と定義されているとすると、折れ曲がった部分を持つ関数(例えば、傾き2と傾き1の直線が連続に繋がってる点があるような。つまりそこでは微分不可)も上に凸の関数と言えます。 しかし、  上に凸の関数は、それが定義されている区間の上で連続的微分可能 という定理があるらしいのですが、連続的微分可能ということは、その区間の任意の点で微分可能ということが前提されているのではないでしょうか?しかし、それだと微分不可の点があってもいいという上の主張と矛盾してしまいます。 連続的微分可能は次のような定義で書いてあります。  ある領域で、すべての1階の偏導関数が存在して、それらがすべて連続である関数 1階導関数が存在して、それが連続であるためには、すべての点で微分可能でないとダメだと思うのですが、その辺に間違いがあるのでしょうか…? どうぞよろしくお願い致します。

  • 凸関数に関する問題

    関数fが区間Iで凸関数であることの定義は、 『 区間Iにおける全てのx,yに対して αf(x)+(1-α)f(y)≧f(αx+(1-α)y) 但し、0<α<1 』 であることとします。 この時以下が成り立つことを示せ。 (1)関数fが凸ならば,任意の3点x<y<zに対して f(y)-f(x)/(y-x)≦f(z)-f(x)/(z-x)≦f(z)-f(y)/(z-y) (2)関数fは内点で連続であることを示せ。 (1)の証明は出来ました。 かなり困っているので、どなたか(2)が分かる方、よろしくお願いします。

  • 関数の連続性

    f(x)=xsin(1/x) (x≠0) f(x)=0 (x=0) (1)x=0におけるf(x)の連続性、微分可能性を調べよ。 (2)x≠0におけるf(x)の連続性、微分可能性を調べよ。 (1)は lim[x→0]xsin(1/x)=0=f(0) より連続性をもっている。 f'(x)=lim[h→0]{f(0+h)-f(0)}/h =lim[h→0]sin(1/h) となって極限値は存在しないよってf(x)は原点において 微分不可能である。 上記が自分なりに考えた答えです。あっているかどうかは分かりません。 解答がない為。 (2)についてですが、 x≠0の時は当然連続であるなんだと思いますが、どのように証明したらよいのですか?また、微分可能性はどのようになるのでしょうか? ご指導おねがい致します。

  • 関数解析

    1.X,Yはバナッハ空間、TはDを定義域とするXからYへの閉線形作用素、SはEを定義域とするXからYへの可閉線形作用素で、D⊂Eが成り立っているとする。 (1)ある定数a∈(0,1),b≧0が存在し、任意のx∈Dに対して ||Sx||≦a||Tx||+b||x|| が成り立つならば、Dを定義域とするT+Sは閉作用素となることを示せ。 (2)a=1において(1)が成り立たないような反例をあげよ。 2,各t>0に対しT(t)はバナッハ空間XからXへの有界線形作用素であり、任意のx∈Xに対し、Xの位相でlim[t→+0]T(t)x=xが成り立っているとする。 このときε>0を十分小さくとれば、T(t)の作用素ノルムは区間t∈(0,ε)上で有界であることを一様有界性定理を用いて示せ。 この2問がわかりません。。どなたか解答をよろしくお願いします・・・

  • 局所凸位相線形空間の微分について

    Vを完備な局所凸位相線形空間(基本近傍系として凸近傍が取れる位相線形空間)とする。a, bは実数。 X:[a, b]→Vを連続関数とし、lim h→0 (X(λ+h) - X(λ)) /h = X’(λ) が存在するものとする。 このとき、 X’(λ) = 0 ∀λ∈[a, b] ならば、Xは[a, b]上定数であることを示せ。 微分積分では当たり前の話で、ロル定理と平均値の定理を使って証明しましたが、局所凸位相線形空間となると、どう証明すればよいのかがわかりません。 微分積分と同じように考えていくと、ロル定理が、コンパクト上の関数は最大値と最小値が存在することを利用して証明しますが、局所凸空間では、最大とか最小とかがそもそもない気がして詰まってしまいました。 局所凸位相線形空間を専門に使っている方ならば、当たり前のことだと思いますので、証明の概略でもよいので教えてくれませんか。

  • 二変数関数微分

    極座標変換をしてからx=rcosθ,y=rsinθにすれば わかりやすいときいたんですが ちょっと分からない問題がいくつかあるので アドバイスお願いします。 (1)極限が存在するかどうか調べよ lim((x,y)→(0,0)) xylog(x^2+y^2) (2)原点における連続性、偏微分可能性、微分可能性を求めよ。 f(x,y)=xysin(1/√(x^2+y^2))・・・((x,y)≠(0,0))     0・・・((x,y)=(0,0)) です。1は極座標でやってみたのですが log rが残ってr→0にするとその部分が どうなるのかわからなくなってしまいました。 2は微分可能の定義より f(a+h,b+k)=f(a,b)+fx(a,b)h+fy(a,b)k+α√(h^2+k^2) で f(x+a,y+b)=√(1-a^2-b^2)-ax/√(1-a^2-b^2)-bx/√(1-a^2-b^2)+α√(a^2+b^2) よりαが存在するから微分可能。 よって連続、偏微分も可能である。 という解答でいいのでしょうか? 自分的にはちょっと違うような気もするので教えて下さい。

  • ヘビサイド関数の証明について

    ヘビサイド関数の不定積分 ∫H(t)dt=x(x≧0)、0(x<0) [∫の上端はx、下端は0] はx=0で微分できない。 という問題なのですが 証明  不定積分をG(x)=∫H(t)dtと置く。 不定積分はx=0で、G(0)=0、G(x)→0(x→0-、x=0+)なので連続 両辺の微分係数について考える。 (1)左側微分係数について   lim_h→0 {G(h)-G(0)}/h={0-0}/h=0 (2)右側微分係数について   lim_h→0 {G(h)-G(0)}/h={1-0}/h=∞ 計算した結果、両辺での微分係数が違うので、x=0での微分係数が存在しない。 よってx=0で微分不可能である。                                   以上 が私が回答した結果です。 この回答に不備や訂正箇所はありますか? ありましたら、是非教えてください。 正直微分係数の計算も自信がありません。 確認し、訂正頂けたら幸いです。 よろしくお願いします。

  • ある関数が微分可能かどうかを調べる問題がわからない

    関数 f(x)=|x(x-2)| が x=2 において微分可能であるかどうか調べよ という問題がわかりません。 グラフを描くと微分可能ではないように思うのですが、 (x=2に、右から近づいたときと左から近づいたときの、その点における接線の傾きが等しくないように思える) 計算で確かめることができません。 確かめられないというのは、やり方がわからないという意味です。 おそらく、 lim(h→2+0){ f(2+h)-f(h) / h } lim(h→2-0){ f(2+h)-f(h) / h } の値を求めて比較すればいいのでしょうが、 右側・左側からの極限がよく理解できていないため、どのような操作をしてよいかわかりません。 右側・左側からの極限まで戻ってやり直してみたのですが、いろいろ考えているうちに混乱してしまいました。 どなたかご教示いただけると幸いです。