二変数関数微分に関する問題

このQ&Aのポイント
  • 極限が存在するかどうか調べる
  • 原点における連続性・偏微分可能性・微分可能性を求める
  • 微分可能の定義を用いて解答する
回答を見る
  • ベストアンサー

二変数関数微分

極座標変換をしてからx=rcosθ,y=rsinθにすれば わかりやすいときいたんですが ちょっと分からない問題がいくつかあるので アドバイスお願いします。 (1)極限が存在するかどうか調べよ lim((x,y)→(0,0)) xylog(x^2+y^2) (2)原点における連続性、偏微分可能性、微分可能性を求めよ。 f(x,y)=xysin(1/√(x^2+y^2))・・・((x,y)≠(0,0))     0・・・((x,y)=(0,0)) です。1は極座標でやってみたのですが log rが残ってr→0にするとその部分が どうなるのかわからなくなってしまいました。 2は微分可能の定義より f(a+h,b+k)=f(a,b)+fx(a,b)h+fy(a,b)k+α√(h^2+k^2) で f(x+a,y+b)=√(1-a^2-b^2)-ax/√(1-a^2-b^2)-bx/√(1-a^2-b^2)+α√(a^2+b^2) よりαが存在するから微分可能。 よって連続、偏微分も可能である。 という解答でいいのでしょうか? 自分的にはちょっと違うような気もするので教えて下さい。

質問者が選んだベストアンサー

  • ベストアンサー
  • keyguy
  • ベストアンサー率28% (135/469)
回答No.3

単なる修正もれ (1) 対数は自然対数とする sin(2・θ)・r^2・logrを考える 0<r<1のとき0<log(1/r)<1/r-1であるから r・(r-1)<r^2・log(r)<0 (2) 連続性: |f(x,y)|=|x・y・sin(1/√(x^2+y^2))|≦|x・y| 偏微分可能性: fx(0,0)=lim(x→0)・(f(x,0)-f(0,0))/x ところでf(x,0)≡0 微分可能性: |f(x,y)/√(x^2+y^2)|≦|x・y/√(x^2+y^2)| ≦|(x^2+y^2)/2/√(x^2+y^2)|=√(x^2+y^2)/2

その他の回答 (2)

  • keyguy
  • ベストアンサー率28% (135/469)
回答No.2

書き間違い (1) 対数は自然対数とする sin(2・θ)・r^2・logrを考える 0<r<1のとき1-1/r<log(r)<0であるから r・(r-1)<r・log(r)<0 (2) 連続性: |f(x,y)|=|x・y・sin(1/√(x^2+y^2))|≦|x・y| 偏微分可能性: fx(0,0)=lim(x→0)・(f(x,0)-f(0,0))/x=0 微分可能性: |f(x,y)/√(x^2+y^2)|≦|x・y/√(x^2+y^2)| ≦|(x^2+y^2)/2/√(x^2+y^2)|=√(x^2+y^2)/2

  • keyguy
  • ベストアンサー率28% (135/469)
回答No.1

(1) 対数は自然対数とする sin(2・θ)・r^2・logrを考える 0<r<1のとき1/r-1<log(r)<0であるから r・(1-r)<r・log(r)<0 (2) 連続性: |f(x,y)|=|x・y・sin(1/√(x^2+y^2))|≦|x・y| 偏微分可能性: fx(0,0)=lim(x→0)・(f(x,0)-f(0,0))/x=0 微分可能性: |f(x,y)/√(x^2+y^2)|≦|x・y/√(x^2+y^2)| ≦|(x^2+y^2)/2/√(x^2+y^2)|=√(x^2+y^2)/2

関連するQ&A

  • 2変数関数の可微分性

    2変数関数の可微分性 2変数関数f(x,y)が点(a,b)の近傍においてf(x,y)が0ではなく、かつ(a.b)で可微分、すなわちf(a+h,b+k)=f(a,b)+Ah+Bk+R(a,b,h,k) lim(h,k)→(0,0) R(a,b,h,k)/(h^2+k^2)^1/2=0であるとき、1/f(x,y)も(a,b)で可微分であることを示せ。 というものなのですが・・・ hの係数とkの係数を定めること、とヒントにはあるのですが、全然分かりません・・・ ご回答どうぞよろしくお願いいたしますm(_ _)m

  • 2変数関数の可微分性

    2変数関数の可微分性 2変数関数f(x,y)が点(a,b)の近傍においてf(x,y)が0ではなく、かつ(a.b)で可微分、すなわちf(a+h,b+k)=f(a,b)+Ah+Bk+R(a,b,h,k) lim(h,k)→(0,0) R(a,b,h,k)/(h^2+k^2)^1/2=0であるとき、1/f(x,y)も(a,b)で可微分であることを示せ。 というものなのですが・・・ hの係数とkの係数を定めること、とヒントにはあるのですが、全然分かりません・・・ ご回答どうぞよろしくお願いいたしますm(_ _)m

  • f(x,y)=√|xy|が原点で微分不可能と示す

    お世話になります、以下の問題を解くにあたって極座標変換を使いたいのですが、その用法に自信がありません。 お手数をお掛けいたしますが、添削をお願いしたいのです。 >>f(x,y)の点(a,b)での全微分可能の定義 lim[(h,k)→0] {f(a+h,b+k)-f(a,b)-(Ah+Bk)}/√(h^2+k^2) =0より f(x,y)=√|xy|が原点で微分不可能であることを示したいのです。 k=0の時、定義はlim[h→0] {f(a+h,b)-f(a,b)-Ah} / h =0 lim[h→0] {f(a+h,b)-f(a,b) } / h =Ah/h 左辺がx座標の偏微分係数になっているので、fx(a,b)=A 同様にh=0のとき、fy(a,b)=B ∴定義はlim[(h,k)→0] {f(a+h,b+k)-f(a,b)-( fx(a,b)h+ fy(a,b)k)}/√(h^2+k^2) =0 a=0,b=0として、 f(0,0)=0 , f(0+h,0+k)= √|hk| f(x,y)=√|xy|の原点での偏部分係数は fx(0,0)= lim[h→0] {f(0+h,0)-f(0,0)} / h = lim[h→0] 0/h =0 fy(0,0)= lim[k→0] {f(0,0+k)-f(0,0)} / k = lim[k→0] 0/k =0 これらを定義に代入して、 lim[(h,k)→0] √|hk|/√(h^2+k^2)…(※) が0に収束するかについて 点(0,0) と点(0+h,0+k)を結ぶ直線をrとして、点(0,0)と点(0+h,0)を結ぶ直線とrのなす角をθとする。 cosθ=h/rよりh=rcosθ , sinθ=k/rよりk=rsinθ (ただし、r>0 ,0≦θ≦π/2 , (h,k)→0 ⇒ r→0) (※)に代入して、lim[r→0] √|r^2cosθsinθ|/√{r^2(cos^2θ+sin^2θ)} , r>0より lim[r→0] √(r^2| cosθsinθ|) / √r^2 = lim[r→0] (r√| cosθsinθ| )/ r = lim[r→0] √| cosθsinθ|= √| cosθsinθ| ∴ 極限値はθに左右される。つまり全微分不可能である。

  • 極座標の偏微分

    二次元直交座標と極座標の関係が x=rcosφ y=rsinφ で表されるとき、∂r/∂x を求めたいのですが、 x=rcosφからr=x/cosφとしてrをxで偏微分すると1/cosφ=r/x となり、 r^2=x^2+y^2からr=√x^2+y^2 としてrをxで偏微分するとx/r となってしまうのですが、 どちらが正しいのですか???

  • 合成関数の微分

    合成関数の微分に関する問題なのですが、  f(x,y)をx=rcosθ、y=rsinθで変数変換し、f(x,y)=g(r,θ)としたとき、 ∂f/∂x、∂f/∂yを∂g/∂r,∂g/∂θで表せ。 という問題がうまく解けません。合成関数の微分の公式を用いていけばよいと思うのですが、∂g/∂r,∂g/∂θがどうやって出てくるのかがわかりません。どなたか教えていただけませんでしょうか?よろしくお願いします。

  • 2変数関数についての問題です。

    以下の問題がわからないので、詳しく解説していただけると助かります。 関数f(x,y)が(0,0)で連続であることと、すべてのθについて、 g(r)=f(rcosθ,rsinθ)がr=0で連続であることは同値であることを示せ。

  • 関数の極限

    杉浦光夫「解析演習」42ページ~43ページの例題 2.17(3)です。 次の関数の R^2 における連続性を調べよ. f(x, y) = (x^2)y/(x^4 + y^2) ((x, y) ≠ 0 のとき) f(x, y) = 0 ((x, y) = 0 のとき) [解答]では (a, b) ≠ (0, 0) となるすべての点 (a, b) で f(x, y) が連続関数となることはすぐわかる. 原点 (a, b) = (0, 0) における連続性を調べるため, 極座標表示 x = rcosθ, y = rsinθ を利用する. すなわち, g(r) = f(rcosθ, rsinθ) とおき, r → +0 のとき, θ に関係なく g(r) → f(0, 0) = 0 となるかどうかを確かめればよい. g(r) = r(sinθ)(cos^2(θ))/((r^2)cos^4(θ) + sin^2(θ)) より, R^2 上連続である. とかかれています。 質問のひとつめは,「θ に関係なく」の意味です。 0 ≦ θ < 2π の範囲にある θ を任意にひとつ取って固定するという意味でしょうか。 それなら, r → +0 のとき g(r) → 0 となるのは納得できます。 質問のふたつめは, θ を固定した場合に r → +0 のとき g(r) → 0 になれば, (x, y) → 0 のとき f(x, y) → 0 がいえたことになるのでしょうか。 θ を固定すると近づけ方は限定され, (x, y) → 0 のとき f(x, y) → 0 がいえたことにならないと思います。

  • 偏微分

    次の偏微分を求めよ。ただし(1)-(3)ではデカルト座標xyzを極座標rθΦの関数とし、(4)-(6)では極座標rθΦをデカルト座標xyzの関数として微分を行うこと。 (1)Δx/Δθ=rcosθ×cosΦ (2)Δy/ΔΦ=rsinθ×cosΦ (3)Δz/Δr=cosθ これでよいでしょうか・・・?? (4)Δr/Δy=y/√(x^2+y^2+z^2)=y/r (5)Δθ/Δz (6)ΔΦ/Δx (5)(6)がまったく分かりません^^;たとえば、(5)ではtanθを微分したらよいのでしょうか?? よろしくお願いします。

  • 偏微分と極座標

    偏微分と極座標 (∂^2) f (x,y)/∂x^2 + (∂^2) f (x,y)/∂y^2 から 極座標表示 x=rcosθ,y=rsinθ を用いて [ ∂^2/∂r^2 +(1/r)(∂/∂r) + (1/r^2)(∂^2/∂θ^2) ] f (r,θ) を導くという課題なのですが、見当がつかず困っています。 どなたかご教授頂けないでしょうか?よろしくお願いします。 ∂z/∂u = (∂z/∂x)(∂x/∂u) + (∂z/∂y)(∂y/∂u) ∂z/∂v = (∂z/∂x)(∂x/∂v) + (∂z/∂y)(∂y/∂v) を用いるのでしょうか?

  • 全微分可能性の問題です。(再考しました)

    回答者の皆様にはいつもお世話になります。 以下の全微分の問題ですが、全微分可能性の厳密な理解が私自身できていない気がします。 お知恵をお貸しください。 問題:f(x,y)が点(a,b)で全微分可能である事の定義を示し、それを利用してf(x,y)=√(1-x^2-y^2)の原点での微分可能性を証明せよ。 f(x,y)がxとyについて偏微分可能である。(fx,fyと表現します) f(x,y)を点(a,b)の周りで一次近似する最良の平面はf(a,b)+fx(a,b)(x-a)+fy(a,b)(y-b)であり、その誤差εはf(x,y)-{f(a,b)+fx(a,b)(x-a)+fy(a,b)(y-b)}となる。 (x,y)→(a,b)の時、この誤差εがベクトル((x-a),(y-b))の絶対値√((x-a)^2+(y-b)^2)より先に0になれば微分可能なので、lim[(x,y)→(a,b)] [f(x,y)-{f(a,b)+fx(a,b)(x-a)+fy(a,b)(y-b)}] / √((x-a)^2+(y-b)^2)=0がf(x,y)の点(a,b)における全微分可能の定義となる。 f(x,y)=√(1-x^2-y^2)のとき、f(0,0)=1 fx(x,y)=-2x・{1/2√(1-x^2-y^2)}より、fx(0,0)=0 fy(x,y)=-2y・{1/2√(1-x^2-y^2)}より、fy(0,0)=0 ∴ε=√(1-x^2-y^2)-1-{0・(x-0)+0・(y-0)}=√(1-x^2-y^2)-1 又ベクトル(x-0,y-0)の絶対値は√(x^2+y^2) 以上より、lim[(x,y)→(0,0)] {√(1-x^2-y^2)-1}/√(x^2+y^2)=0の時、全微分可能 極座標で考えると、(x,y)→(0,0)の時、r→0であり、x=r・cosθ,y=r・sinθ、 代入してlim[r→0] {√(1-r^2)-1}/r、分子を有理化して、 lim[r→0] -r^2/{r√(1-r^2)+1}=lim[r→0] -r/{√(1-r^2)+1}=-0/2=0 つまり全微分可能である。 というアプローチで如何でしょうか? ご指導願います。