• ベストアンサー

2変数関数の可微分性

2変数関数の可微分性 2変数関数f(x,y)が点(a,b)の近傍においてf(x,y)が0ではなく、かつ(a.b)で可微分、すなわちf(a+h,b+k)=f(a,b)+Ah+Bk+R(a,b,h,k) lim(h,k)→(0,0) R(a,b,h,k)/(h^2+k^2)^1/2=0であるとき、1/f(x,y)も(a,b)で可微分であることを示せ。 というものなのですが・・・ hの係数とkの係数を定めること、とヒントにはあるのですが、全然分かりません・・・ ご回答どうぞよろしくお願いいたしますm(_ _)m

質問者が選んだベストアンサー

  • ベストアンサー
  • muturajcp
  • ベストアンサー率78% (505/644)
回答No.1

f(a+h,b+k)=f(a,b)+Ah+Bk+R(a,b,h,k) A'=-A/(f(a,b)^2) B'=-B/(f(a,b)^2) R'(a,b,h,k)=1/f(a+h,b+k)-1/f(a,b)-A'h-B'k f(a,b)≠0 ∀ε>0 0<ε1<min(ε(|f(a,b)|^2)/8,|f(a,b)|/2) →∃δ(max(|h|,|k|)<δ→|R(a,b,h,k)/(h^2+k^2)^{1/2}|<ε1) 0<δ1<min(δ,ε1(|f(a,b)|)/max(|A|+|B|+2|AB|,1)) max(|h|,|k|)<δ1 → |R'(a,b,h,k)/((h^2+k^2)^{1/2})| =|((Ah+Bk)^2+(Ah+Bk-f(a,b))R(a,b,h,k))/(f(a+h,b+k)f(a,b)^2(h^2+k^2)^{1/2})| ≦2(|A|+|B|+2|AB|)(h^2+k^2)^{1/2}/|f(a,b)^3|+4|R(a,b,h,k)/(h^2+k^2)^{1/2})|/|f(a,b)^2| ≦ε 1/f(a+h,b+k)=1/f(a,b)+(-A/(f(a,b)^2))h+(-B/(f(a,b)^2))k+R'(a,b,h,k) lim_{(h,k)→(0,0)}R'(a,b,h,k))/((h^2+k^2)^{1/2})=0 1/f(x,y)も(a,b)で可微分

chaikaa
質問者

お礼

詳しくありがとうございました!

関連するQ&A

  • 2変数関数の可微分性

    2変数関数の可微分性 2変数関数f(x,y)が点(a,b)の近傍においてf(x,y)が0ではなく、かつ(a.b)で可微分、すなわちf(a+h,b+k)=f(a,b)+Ah+Bk+R(a,b,h,k) lim(h,k)→(0,0) R(a,b,h,k)/(h^2+k^2)^1/2=0であるとき、1/f(x,y)も(a,b)で可微分であることを示せ。 というものなのですが・・・ hの係数とkの係数を定めること、とヒントにはあるのですが、全然分かりません・・・ ご回答どうぞよろしくお願いいたしますm(_ _)m

  • 変数関数の微分

    変数関数の微分 この問題をどなたか解いてもらえませんでしょうか? 一晩考えましたがわかりませんでした。。。 関数 z=f(x,y) を以下のように定める。 f(x,y) = xy ― √x^2+y^2 (x,y)≠(0,0)のとき 0 (x,y)=(0,0)のとき (1) 1変数関数f(x,0)のx=0での微分関数と、 1変数関数f(0,x)のy=0での微分係数を求めなさい。 (2) r(x,y)によってxy平面上での原点(0,0)と点(x,y)の距離を表すことにする。 つまりr(x,y)=√x^2+y^2である。 実数t≠0について、(x,y)=(t,t)となる場合について考える。 lim  f(t,t)    ――― t→0 r(t,t) を求めなさい。

  • 二変数関数微分

    極座標変換をしてからx=rcosθ,y=rsinθにすれば わかりやすいときいたんですが ちょっと分からない問題がいくつかあるので アドバイスお願いします。 (1)極限が存在するかどうか調べよ lim((x,y)→(0,0)) xylog(x^2+y^2) (2)原点における連続性、偏微分可能性、微分可能性を求めよ。 f(x,y)=xysin(1/√(x^2+y^2))・・・((x,y)≠(0,0))     0・・・((x,y)=(0,0)) です。1は極座標でやってみたのですが log rが残ってr→0にするとその部分が どうなるのかわからなくなってしまいました。 2は微分可能の定義より f(a+h,b+k)=f(a,b)+fx(a,b)h+fy(a,b)k+α√(h^2+k^2) で f(x+a,y+b)=√(1-a^2-b^2)-ax/√(1-a^2-b^2)-bx/√(1-a^2-b^2)+α√(a^2+b^2) よりαが存在するから微分可能。 よって連続、偏微分も可能である。 という解答でいいのでしょうか? 自分的にはちょっと違うような気もするので教えて下さい。

  • 偏微分係数。

    次の二変数関数fの(0,0)での各変数x,yに関する偏微分係数を求めよ。 f(x,y)= (2y+sinx/x+y if x+y≠0 (1 if x+y=0 解)xに関して lim(h→0) 1/h{f(0+h,0)-f(0,0)}=   lim(h→0)sinh/h・1/h-1/h →+∞ よってfは(0,0)でxに関して偏微分ではない。 yに関して lim(h→0) 1/h{f(0,0+h)-f(0,0)}= lim(h→0) 2/h-1 →+∞ よってfは(0,0)でyに関して偏微分ではない。 これ合ってるでしょうか?間違っている気がするのですが…ご教授お願い致します。

  • 多変数関数の微分の問題で困っています。

    多変数関数の微分の問題で困っています。 問: f(x,y)=e^{(x+y)cos(x-y)}のとき、 (x,y)→(0,0) のとき、 {f(x,y)-p(x,y)}/(x^2+y^2) → 0 を満たす二次多項式p(x,y)を求めよ。 補足: 多変数関数の極限の基本定理: lim_{P→P'} f(P)=α,lim_{P→P'} g(P) =βとするとき、 f(P) < h(P) < g(P) かつ α=β ⇒ lim_{P→P'} h(P)=α を使うのかなと方針を立てたのですが、 f(P)とg(P)を上手く選ぶことができません。。 どなたか知恵を貸してください!

  • f(x,y)=√|xy|が原点で微分不可能と示す

    お世話になります、以下の問題を解くにあたって極座標変換を使いたいのですが、その用法に自信がありません。 お手数をお掛けいたしますが、添削をお願いしたいのです。 >>f(x,y)の点(a,b)での全微分可能の定義 lim[(h,k)→0] {f(a+h,b+k)-f(a,b)-(Ah+Bk)}/√(h^2+k^2) =0より f(x,y)=√|xy|が原点で微分不可能であることを示したいのです。 k=0の時、定義はlim[h→0] {f(a+h,b)-f(a,b)-Ah} / h =0 lim[h→0] {f(a+h,b)-f(a,b) } / h =Ah/h 左辺がx座標の偏微分係数になっているので、fx(a,b)=A 同様にh=0のとき、fy(a,b)=B ∴定義はlim[(h,k)→0] {f(a+h,b+k)-f(a,b)-( fx(a,b)h+ fy(a,b)k)}/√(h^2+k^2) =0 a=0,b=0として、 f(0,0)=0 , f(0+h,0+k)= √|hk| f(x,y)=√|xy|の原点での偏部分係数は fx(0,0)= lim[h→0] {f(0+h,0)-f(0,0)} / h = lim[h→0] 0/h =0 fy(0,0)= lim[k→0] {f(0,0+k)-f(0,0)} / k = lim[k→0] 0/k =0 これらを定義に代入して、 lim[(h,k)→0] √|hk|/√(h^2+k^2)…(※) が0に収束するかについて 点(0,0) と点(0+h,0+k)を結ぶ直線をrとして、点(0,0)と点(0+h,0)を結ぶ直線とrのなす角をθとする。 cosθ=h/rよりh=rcosθ , sinθ=k/rよりk=rsinθ (ただし、r>0 ,0≦θ≦π/2 , (h,k)→0 ⇒ r→0) (※)に代入して、lim[r→0] √|r^2cosθsinθ|/√{r^2(cos^2θ+sin^2θ)} , r>0より lim[r→0] √(r^2| cosθsinθ|) / √r^2 = lim[r→0] (r√| cosθsinθ| )/ r = lim[r→0] √| cosθsinθ|= √| cosθsinθ| ∴ 極限値はθに左右される。つまり全微分不可能である。

  • 微分積分の問題。微分係数の問題です。

    次の関数について()内の点における値と微分係数を求めよ。 (1)y=Sin^-1 x/2 (x=1) (2)y=(Tan^-1x)^2 (x=-1) 値は分かるんですけど微分係数の求め方が分かりません。 lim(h→0) {f(a+h)-f(a)}/h で求めるんでしょうか?でも求まらないような……。 途中式含め教えて下さい。お願いします。

  • 全微分可能の概念がいまひとつ分からないのですが

    全微分可能とは、大雑把にいえば全ての方向において微分可能ということですよね。 しかし、解析学の教科書では、 (△z-Ah-Bk)/(sqrt(h^2+k^2))→0 ((h,k)→(0,0)) (ただし、△z=f(a+h,b+k)-f(a,b))……(1) となるようなh,kに無関係な定数A,Bが存在するならば、関数f(x,y)は(a,b)において全微分可能と定めています。 ところで、1変数関数が微分可能の時は、 f(x+△x)-f(x)=(△f(x)/△x)△x であり、 これから、2変数関数が全微分可能の時は、 u(x+△x,y+△y)-u(x,y)=(△u/△x)△x+(△u/△y)△y ……(2) が成り立つことは、図を書いてみたりすると何となくわかる気がするのですが、(1)と(2)の連帯性が見えてこないのです。 ちなみに、複素解析では(2)を使っているので、 (2)を全微分可能の概念と考えておいたらいいでしょうか?この方が直感的に分かりやすい気がするので。(1)の概念 は抽象的でとらえにくい気がします。

  • 関数方程式、微分方程式

    関数f(x)は、f(x+y)=f(x)+f(y)+f(x)f(y)を満たしている。 関数f(x)が、x=0で微分可能であるとき、 (1) 関数f(x)はすべてのxの値で微分可能であることを示せ。 (2) 関数f(x)を求めよ。 ※(2)はわかるので省きます。 y=0と置くと、f(x+0)=f(x)+f(0)+f(x)f(0)より、 f(0){f(x)+1}=0 従って、f(0)=0またはf(x)=-1 ●(i)f(0)=0のとき f'(0)=lim[h→0] f(h)/h = aとおくと、 f'(x)=lim[h→0] {f(x+h)-f(x)}/h =lim[h→0] {f(h)+f(x)f(h)}/h = a{f(x)+1} ●(ii)f(x)=-1のとき f'(x)=0より、微分可能。 f'(0)が存在するので、それを利用してf'(x)が存在することを示す、というのはわかります。 なぜy=0を代入するのですか? 代入すると上手くいきますが、必ずしもy=0でなければいけないのでしょうか?

  • 数学 1変数関数の微分に関する問題  

    期末過去問です。 回答・解説よろしくお願いいたします。 f: R→R, f(x)=x3 を関数とする。  *3は乗数です。   (1) fの1からhだけ変化した時の平均変化率を求めよ。   (2) fの1における微分係数を求めよ。   (3) H>0とする。 (1)で求めた平均変化率をg(h)とするき       g(h)=f’(c) , c∈(1,1+h) となるcをhを用いて表せ。   (4) (3)で求めたcに対し, 極限値 lim c-1/h を求めよ。                          * limの下にh-0です。                          * c-1/hは分数です。