• ベストアンサー
  • すぐに回答を!

関数方程式、微分方程式

関数f(x)は、f(x+y)=f(x)+f(y)+f(x)f(y)を満たしている。 関数f(x)が、x=0で微分可能であるとき、 (1) 関数f(x)はすべてのxの値で微分可能であることを示せ。 (2) 関数f(x)を求めよ。 ※(2)はわかるので省きます。 y=0と置くと、f(x+0)=f(x)+f(0)+f(x)f(0)より、 f(0){f(x)+1}=0 従って、f(0)=0またはf(x)=-1 ●(i)f(0)=0のとき f'(0)=lim[h→0] f(h)/h = aとおくと、 f'(x)=lim[h→0] {f(x+h)-f(x)}/h =lim[h→0] {f(h)+f(x)f(h)}/h = a{f(x)+1} ●(ii)f(x)=-1のとき f'(x)=0より、微分可能。 f'(0)が存在するので、それを利用してf'(x)が存在することを示す、というのはわかります。 なぜy=0を代入するのですか? 代入すると上手くいきますが、必ずしもy=0でなければいけないのでしょうか?

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数143
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • alice_44
  • ベストアンサー率44% (2109/4758)

(i) のとき、f'(x) を f'(0) に帰着するために、 f(0)=0 が必要になります。着眼点は、ここです。 所与の関数等式をどうにかして、 f(0) の値が判ればよいのです。 どうこうしようにも、一本の式以外は 0 での微分可能くらいしか判っていないので、 できることは代入くらいのもの。 その際、f(0) 以外のものが必要になると そっちの値の調達に困るので、 0 を入れてみる というのは まず試してみるべきものの一つです。 いろいろ模索するのですが、今回は、 たまたま y=0 がうまくいったのでした。 私は、x=y=0 なども試してみましたが、 f(0)=-1 の場合の処理を考えると、 y=0 から (ii) へ繋げるのが、うまいですね。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

納得いきました。 ありがとうございます。

関連するQ&A

  • 関数方程式 恒等式型

    関数f(x)はすべての実数x,yに対してf(x+y)=f(x)e^y+f(y)e^xを満たし、さらにx=0では微分可能でf'(0)=1とする。 (1)f(0)を求めよ。 (2)lim【h→0】f(h)/hを求めよ。 (3)関数f(x)はすべてのxで微分可能であることを、微分の定義にしたがって示せ。さらにf'(x)をf(x)を用いて 表せ。 (4)関数g(x)をg(x)=f(x)e^(-x)で定める。g'(x)を計算して関数f(x)を求めよ。 すみませんが、お願いします。

  • 微分方程式

    微分可能な関数f(x)が, ∫[0~x]f(t)dt=x^3-3x^2+x+∫[0~x]tf(x-t)dt をみたしている. このとき, f(x)を求めよ. 与式の左辺をF(x), 右辺をG(x)とおくと, F(x)=G(x) ⇔ F'(x)=G'(x) かつ F(a)=G(a)となるような定数aが存在するー(※) F(0)=G(0)=0より, (※) ⇔ F'(x)=G'(x) h'(x)=f(x), g"(x)=f(x)とすると ∫[0~x]tf(x-t)dt=[-tf(x-t)][0~x]+∫[0~x]F(x-t)dt=-xF(0)-g(0)+g(x) より,与式の両辺をxで微分すると, f(x)=3x^2-6x+1+F(x)-F(0)=3x^2-6x+1+∫[0~x]f(t)dtー(1) 再びxで微分して, f'(x)=6x-6+f(x) f(x)=yとおくと, dy/dx=6x-6+y 6x+y=uとおくと, dy/dx=du/dx-6より, du/dx=u u≠0のとき,  du/u=dx ⇔∫du/u=∫dx ⇔log|u|=x+c (c:積分定数) ⇔u=±e^(x+c) ⇔y=±e^(x+c)-6x (1)にx=0を代入して,f(0)=1 ⇔ ±e^c=1 ⇔ c=0 ∴y=±e^x-6x また, u=0のとき, y=-6xより,(1)に代入すると, -6x=3x^2-6x+1-3x^2 ⇔ 0=1となり, いかなるxについてもこれは成り立たず不適. ∴f(x)=±e^x-6x 添削お願いします.

  • 合成関数の微分の証明

    合成関数の微分の証明についての質問ですが、”やさしく学べる微分積分”には以下のような式変形を経て証明しています。 g(u+k)-g(u)/k = g'(u)+O(k) (lim k→0 O(k)=0) g(u+k)-g(u) = k{g'(u)+O(k)} この式は、k=0のときも成立しkはどんな値でも良いため、 k=f(x+h)-f(x) とおけ、f(x+h)=f(x)+k,u=f(x) ゆえに、  lim g(f(x+h))-g(f(x))/h=lim g(f(x)+k)-g(f(x))/h =lim g(u+k)-g(u)/h=lim k{g'(u)+O(k)}/h =lim f(x+h)-f(x)/h ・k{g'(u)+O(k)} f(x)は微分可能で連続。ゆえにh→0 k→0 したがって、極限値は存在し、  =f'(x){g'(u)+0}=f'(x)g'(x) ゆえに、y'=g'(x)f'(x) が成立する。 とあります。 私には、結局はf(x+h)=f(x)+k と置けて、コーシーの平均値の定理のように、平均値の定理のx軸をf(x)軸つまりはu軸のように考えて、 f(x)=uの置き換えをすれば、f(x+h)=u+kとおけ、今までの微分計算と同様に計算できるというふうにしか読めません^^; でも、どうもg(u+k)-g(u) = k{g'(u)+O(k)}の式に 線形性なのかなんなのか、特別な関係を示す意味があるような気がするのですが、どなたか解説していただけませんでしょうか?

その他の回答 (2)

  • 回答No.3
  • Tacosan
  • ベストアンサー率23% (3656/15482)

やってみたんだとしたら, 例えば y=1 のときどうだったかって体感してていいと思う.

共感・感謝の気持ちを伝えよう!

質問者からのお礼

変数はy以外にもxがありますから、そちらも調べなければいけません。 また、代入以外にも(1)を導く方法があるかもしれません。 そう考えると、キリがないと思います。 ありがとうございました。

  • 回答No.1
  • Tacosan
  • ベストアンサー率23% (3656/15482)

疑問を持つのはいいことなんだけど.... 質問する前に手を動かしてみましたか?

共感・感謝の気持ちを伝えよう!

質問者からの補足

やりましたよ。ちなみに、2回目です。 1回目(1~3ヶ月くらい前)は慣れてなかったために解説を見てもわかりませんでした。 今回は解いている最中に解法を思い出したので解けました。 解法がわかっても理由がわかりません。

関連するQ&A

  • 合成関数の微分公式について

    すいません。 なんども。 もうひとつおねがいします。 困っています。 u=f(x),y=g(u)がともに微分可能のとき, 合成関数も微分可能であり、土の式が成り立ちます。 y=g{f(x)}=g・f(x) dy/dx=dy/du・du/dx または y'=g'(u)・f'(x) これを、証明するには、 du/dx= lim f(x+h)-f(x)/h , h→0 dy/du= lim g(u+k)-g(u)/h h→0 ここで、k=f(x+h)-f(x)とおくと、kキ0のとき dy/dx=[g(f(x))]'   =lim g(f(x+h))-g(f(x))/h まではわかるのですが、 =lim g{f(x+h)}-g{f(x)}/{f(x+h)-f(x)}  ・{f(x+h)-f(x)}/h はどのうに現れるのでしょうか? できれば、途中計算がほしいです。 お願いします

  • 関数f(x)の連続性と微分可能性に関する問題です。

    aを実数とする。次で定義される関数f(x)の連続性と微分可能性を調べよ。 x≦0のときf(x)=0、x>0のときf(x)=x^a*sin1/x という問題について、解いている途中で混乱が生じました。 x≠0のときf(x)は連続かつ微分可能だから、x=0におけるふるまいを調べる。 x>0のとき、f'(x)=a*x^(a-1)*sin(1/x)-x^(a-2)*cos1/xであり、x<0のときf'(x)=0 (i)右からの極限 -1≦sin1/x≦1だから、-x^a≦x^a*sin1/x≦x^a はさみうちの原理より、lim【x→+0】(-x^a)≦lim【x→+0】f(x)≦lim【x→+0】x^a a>0ならばlim【x→+0】f(x)=0 a=0のときはlim【x→+0】f(x)=1 a<0のときはlim【x→+0】f(x)は発散。 よってa>0のとき連続。a≦0のとき不連続。(答) 次に微分可能性を調べる。 (ii)右からの極限 lim【x→+0】f'(x)=lim【x→+0】{a*x^(a-1)*sin(1/x)-x^(a-2)*cos1/x} (i)と同様に考えるとlim【x→+0】a*x^(a-1)*sin(1/x)はa>1のとき0。a=0のときも0。 a=1のときsin∞となり発散で微分不可能。a<1のときも発散で微分不可能。 ゆえにa>1またはa=0に限定してlim【x→+0】f'(x)の極限を調べる。 このときlim【x→+0】f'(x)=lim【x→+0】{-x^(a-2)*cos1/x} -1≦cos1/x≦1であり、同様にはさみうちの原理からlim【x→+0】f'(x)はa>2ならばlim【x→+0】f'(x)=0で微分可能。a<2ならば微分不可能。(答) 問題集には、a>1のとき微分可能。a≦1のとき微分不可能と書いてあります。私の解き方のいけない点を教えてください。

  • 関数方程式について質問です。

    関数方程式について質問です。 f(x) + g(x) = 2x-1 f(x) g(x) = x^2-x-2 f(0) = 1 g(0) = -2 のとき,f(x),g(x)を求める場合, 第1式より g(x) = 2x-1-f(x) として第2式に代入し, f(x) (2x-1-f(x)) = x^2-x-2 {f(x)}^2 - (2x-1)f(x) + (x-2)(x+1) = 0 {f(x)-(x+1)} {f(x)-(x-2)} = 0 f(x) = x+1 または x-2 とし,f(0) = 1より適するのは f(x) = x+1 で, g(x) = 2x-1-f(x) = x-2 (g(0) = -2をみたす) としてもよいでしょうか?

  • 関数f(x)がC∞-級関数であることの証明

    (1)f(x)が連続関数で、x≠0で微分可能かつ lim[x→+0]f'(x)=lim[x→-0]f'(x)=A (Aは実数) ならば、f(x)はx=0でも微分可能でf'(0)=Aとなることを示せ。 (2) f(x)=0 (x≦0のとき) f(x)=e^(-1/x) (x>0のとき) とするとき、f(x)はC∞-級関数であることを示せ。 *************** という問題で、(1)についてはロピタルの定理から簡単に示せるので、分からない点はありません。 (2)なんですが、x>0のとき任意のn=1,2,3,・・・に対し、{f(x)}^(n)は Σ[k=0→2n]{{a【k】}*e^(-1/x)}/x^kの形に表せます。 ∀rについてCr-級をrに関する帰納法で示したいです。 r=1のときf'(x)={e^(-1/x)}/x^2 だから1回微分可能。また、lim[x→0]f'(x)=0=f'(0)よりf'(x)は連続。 よってr=1のときにCr-級であることが証明されました。 この後、どうやっていいかわからないので教えてください。

  • 微分可能

    y=f(x)=(x^2)*sin(1/x) {x=0でないとき} =0 {x=0} (1)x=0で連続であるか? (2)x=0で微分可能か?考察せよ という問題で (1)はlim{x→0}f(x)=f(0)=0なので連続? だと思ったんですがこれを超丁寧に説明するとどうなりますか? (2)は微分可能の定義 f’(a)=lim{x→a}f(x)-f(a)/x-a が存在するときx=aで微分可能であると言える ってのはわかるんですが これをどう使えばいいのか そもそも存在するかどうかってどうやって示すんですか? この問題についても超丁寧に説明するとどうなりますかね? (超丁寧というのはまったく突っ込みようがないぐらいということです)

  • ある関数が微分可能かどうかを調べる問題がわからない

    関数 f(x)=|x(x-2)| が x=2 において微分可能であるかどうか調べよ という問題がわかりません。 グラフを描くと微分可能ではないように思うのですが、 (x=2に、右から近づいたときと左から近づいたときの、その点における接線の傾きが等しくないように思える) 計算で確かめることができません。 確かめられないというのは、やり方がわからないという意味です。 おそらく、 lim(h→2+0){ f(2+h)-f(h) / h } lim(h→2-0){ f(2+h)-f(h) / h } の値を求めて比較すればいいのでしょうが、 右側・左側からの極限がよく理解できていないため、どのような操作をしてよいかわかりません。 右側・左側からの極限まで戻ってやり直してみたのですが、いろいろ考えているうちに混乱してしまいました。 どなたかご教示いただけると幸いです。

  • 関数方程式 未知関数

    関数方程式とはどのようなものでしょうか? 具体的に教えて頂けないでしょうか? また、関数方程式の中で未知関数とはなんでしょうか? 微分方程式ではない簡単な関数方程式を具体的に教えて下さい。 微分方程式や積分方程式が関数方程式の一種だ と言うことは調べました。 y'+y=x・y^3 について未知関数とはどれを示すのですか? xはf(x)ということでしょうか? y''+y'-x=0 などのxもf(x)という事でしょうか? y'=f(y/x) y'=f(x+y) においの未知関数とは、f(y/x),f(x+y)の事でしょうか? 以上、ご回答よろしくお願い致します。

  • 微分可能ではない点

    y=|x|√(x+1)は、x=-1,0で微分可能ではない。と問題集に載っていました。 定義域はx≧-1 x≧0のとき y=x√(x+1) xに-1や0を代入すると、y=0となるから、微分可能ではない。のでしょうか? -1≦x<0のとき y= -x√(x+1) も同様に代入して、y=0 問題集にはy'が存在しない点をもつ。との説明もありますが、わかりません。 微分可能ではない説明をお願いします。

  • 微分の定義に関して

    微分の定義に関してなのですが、参考書を読んでいたら微分の定義のところに次のように 書かれていました。 関数f(x)が点pで微分可能⇔適当な実数aと関数g(x)が存在して、 (イ) f(x)=f(p)+a(x-p)+g(x) (ロ) lim{x→p}(g(x)/(x-p))=0 が成立する。 このとき、aをf(x)の点pにおける微分係数という。 この定義の説明を見てもいったいなんのことを言っているのかさっぱりわかりません。 今まで微分の定義というと lim{x→p}(f(x)-f(p))/(x-p)というのしか習ったことがなかったので、この定義が何を表しているのか 分かりません。 そもそもg(x)がなんなのかaがなんなのか分かりません。 できれば図形的意味も教えていただけるとありがたいです。 よろしくお願いします。

  • 微分可能

    f(x)=ax^2+bx-2 (x>=1),x^3+(1-a)x^2 (x<1) がx=1で微分可能になるようにa,bを定める問題です。 微分して f'(x)=2ax+b (x>1),3x^2+2(1-a)x (x<1) とし、 lim_{x→1-0}f(x)=lim_{x→1+0}f(x) lim_{x→1-0}f'(x)=lim_{x→1+0}f'(x) から連立方程式を導き求めたのですが問題ないでしょうか。解答では定義にしたがってf'(x)の右極限と左極限を計算しているものですから。 よろしくお願いします。