• ベストアンサー
  • すぐに回答を!

三角関数

(cos2x+sin2x+1)/cos2xsin2x 0<x<π/4の最小値についてですが、図形的に2x=π/4の時だろうというのはわかるのですが、微分しないで求まらないでしょうか?自分はtanxのみの式にしてもうまくいきませんでした。よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数75
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2
  • take_5
  • ベストアンサー率30% (149/488)

2x=θとすると、0<x<π/4より 0<θ<π/2. P=(分子)/(分母)とする。 分子=cos2x+sin2x+1=cosθ+sinθ+1、分母=cos2xsin2x=cosθsinθ=(1/2)*sin2θ そこで、cosθ+sinθ=tとすると(1<t≦√2)分子=t+1、(t)^2=1+2cosθsinθより、sin2θ=(t)^2-1. 従って、分母=(1/2)*sin2θ=(1/2)*(t+1)*(t-1)であるから、結局、P=(分子)/(分母)=2(t+1)/(t+1)*(t-1)=2/(t-1)となるから、分母が最大の時Pは最小。 続きは、すぐわかるでしょう。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 三角関数

    先程は失礼しました。 y=3(sinx)^2+4sinxcosx-(cosx)^2 が y=3* (1-cos2x)/2 + 2sin2x - (1+cos2x)/2 になる過程がよく分かりません。 sin2x-cos2x=√2sin(2x- π/4)  となる過程もよく分かりません。 sin2x+cos2X  だったらどうなるのでしょうか。

  • 三角関数の微分の方法

    今数学3に入って、三角関数の微分で困っています。 教科書の三角関数の微分の公式では、 (1)  (sin(x))’=cos(x) (2)  (cos(x))’=-sin(x) (3)  (tan(x))’=1/{cos(x)}^2 と書いてあります。 ですが、(1)を用いた(2)の証明のところで (cos(x))’={sin(x+π/2)}’=cos(x+π/2)・(x+π/2)’=-sin(x) となっています。 また、例題では、 (1)y=sin(2x-1) を微分せよ  y’=cos(2x-1)・(2x-1)’=cos(2x-1)・2=2cos(2x-1) となっています。 なぜ、公式の証明のところでは、cos(x+π/2)に(x+π/2)’をかけるのでしょうか? なぜ、例題でも cos(2x-1)に(2x-1)’をかけるのでしょうか? はじめの公式から読み取れず困っています。 どうか返答お願いします。

  • 三角関数の合成

    三角関数の合成 π/6≦θ≦5/6πのとき、sin{2θ-(π/6)}-cos2θ の最大値と最小値を求めよと言う問題があります。 この式が √3/2 sin2θ-3/2 cos2θ という式になるのはわかりました。でもここからどのようにして合成するのでしょうか? 三角関数の合成の式が√(a^2+b^2) sin(θ+α) なので√3 sin(2θ+α) になるのはわかるのですがどうやってαの部分を出すのかわかりません… 図を書いて求めようとしたのですがさっぱりで… どなたか教えてください。よろしくお願いしますm(__)m

その他の回答 (2)

  • 回答No.3
  • take_5
  • ベストアンサー率30% (149/488)

>自分はtanxのみの式にしてもうまくいきませんでした。 この方針でも出来るだろう。 tanx=tとすれば(0<t<1)、sin2x=(2t)/(t^2+1)、cos2x=(1-t^2)/(t^2+1)となる。これは教科書にも載ってるだろう。 P=(分子)/(分母)=(t^2+1)/(t-t^2)=-1+(1+t)/(t^2+1)となるから、(1+t)/(t^2+1)の最大値を求めると良い。 ここで、微分を使えば良いだけ。

共感・感謝の気持ちを伝えよう!

  • 回答No.1
  • koko_u_
  • ベストアンサー率18% (459/2509)

>自分はtanxのみの式にしてもうまくいきませんでした。 どんな風にうまくいかないのかを補足にどうぞ。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 三角関数の微分(III)

    S=π/2sin^{2}x - x + 1/2sin2x (0<x<π/2) Sが最大となるtanxの値を求めよ。 ds/dx=cos^{2}x(πtanx-2tan^{2}x) としてtanxの増減表を書いてtanx=π/2と出ています。 これはtanxが0<tanx<1の範囲だから、xが増加するに従ってtanxも増加するのでtanxの増減表を書いてもいいと考えて良いのでしょうか? 「0<x<πで常にpsinx≦1/(1-cosx)を満たすpの最大値を求めよ。」 で定数分離をした後、微分して、(2cosx+1)(-cosx+1) となりこれをcosxでの増減表を書いたら全く増減が反対になります。 (なぜかはわかりますが) 上のtanの考え方はあっていますでしょうか?

  • 三角関数の問題

    三角関数の問題  「(1-conθ)/sinθ+(1-sinθ)/conθ の最大値、最小値を求めよ   ただし 0<θ<π/2」 という問題なのですが、式を変換して  (sinθ+cosθ-1)/sinθcosθ となって、三角関数の合成と二倍角の公式で  { 2√2sin(θ+π/4)+2 }/sin2θ となりましたがそこから先が分かりません。合成などしなくて良いのでしょうか。誰かヒントをください!!!

  • 三角関数

    問(1)方程式を解く 0≦x<2πの時 cos2x=cosx cos2x=cosx cos2x-cosx=0 cos(2x-x)=0 cosx=0 ∴x=0,π/2,3π/2 だと思ったのですが、答えが違います。どこが間違っているのでしょうか? 問(2)不等式を解く 3√3sinx+cos2x-4<0 これはどうやっていいか全くわかりません。先ずsinかcosかどちらかにそろえると思うのですが… 問(3)最大値、最小値を求める。 0≦x<πの時 y=cos^2x+sinx y=cos^2x+sinx =1-sin^2x+sinx (sinx=tとおき) =-t^2+t-1 =-(t^2-t)-1 =-(t-1/2)^2+5/4 と最大値が5/4とはわかるのですが最小値はどうやって求めたらいいのでしょうか?与式に0orπを代入するのですか? 問(4)最大値、最小値を求める 0≦x<π/2の時 y=cos^2-4cosxsinx-3sin^2x これは因数分解できないと思うのですが、どうすればいいのでしょう。-4cosxsinxのところがどうしても整理できないのですが(sin,cosどちらかにそろえること) どれか一つでもいいのでよろしくお願いします。

  • 三角関数

    よろしくお願いいたします。 0 <θ<π/2とする。 sinθ-cosθ=1/2のとき、sin2θ=3/4, さてtanθ=? という問題です。 解答は、 2sinθcosθ=3/4の両辺をcosθ^2で割って整理すると 2tanθ=1/cosθ^2=1+tanθ^2であるからX=tanθとおくと、 3X^2-8X+3=0よりX=4±√7・・・※ ここで 0 <θ<π/2かつsinθ-cosθ=1/2>0よりX-1>0であるから、 X=4+√7 ※までは理解できたのですが、そこからしぼりこむところが疑問です。解答はここまでしか書いていないのですが、そんな単純なことなのでしょうか。どうしてX-1>0といえるのでしょうか。 X=4-√7はだいたい4 &#8211; 2.6くらいでしょうか。sinθ-cosθ=√2sin θ(θ-π/4)=1/2など変形してみたのですが、それ以上前に進めませんでした。勉強不足ですが、どなたかアドバイスをお願いいたします。

  • 三角関数の方程式

    y=x+√(3)*sin(x)-cos(x) 0<=x<=2π のときの微分係数が0になるxを求めたい。 y'=1+√(3)*cos(x)+sin(x) y'=0 より  1+√(3)*cos(x)+sin(x)=0 ---(1) (1)を解くのに cos^2(x)+sin^2(x)=1 を使って sin(x)=√(1-co^2(x))を代入して求めたら x=π/2,3π/2,5π/6,7π/6 が得られたのですが、π/2と7π/6は y'が0になりません。 定義域の関係なのかよくわかりません。 なぜ得られたπ/2と7π/6をy'の式に代入したら0にならないか教えて下さい。

  • 三角関数の応用の問題なんですが

    θが-π/3≦θ≦2/3πの範囲で変化するとき3sinθ+2cos2θの最大値と最小値を求めよ。(cos,sinの後の小さい数字は2乗の意味です。) という問題なんですが、自分で一応解いてみたんですが、 わからないので教えて下さい。お願いします。一応自分で途中まで解いたやつも↓に書きました。 sinθ=tとおく。 3sinθ+2cos2θ=3sinθ+2(1-sin2θ)                             =-2sin2θ+3sinθ+2 ここまでしかわかりませんでした・・・。

  • 三角関数の方程式がわかりません.教えてください.

    三角関数の方程式がわかりません.教えてください. 角度は弧度法を用いるとして 「sin2x+sinx=0を満たすxの値を求めよ.」 という問題がわかりません 倍角の公式により,sin2x=2sinx*cosxなので 与式⇒2sinx*cosx+sinx=0   ⇒sinx(2cosx+1)=0 よって,sinx=0またはcosx=-1/2を満たすxを求めると (πは整数とする)x=nπ,2π/3+2nπ,4π/3+2nπ だと思ったのですが, 答えには (2nπ+1)π,2π/3+2nπ,4π/3+2nπ とありました. なぜx=nπ(動径が0またはπのところ)ではなく(2nπ+1)π(動径がπのところ)なのですか?

  • 三角関数

    関数y=3cos^2θ-8snθcosθ+5sin^2θ(0≦θ≦π/2)の最大値、最小値を求めよ。 という問題なんですが 解説に =3-4*2sinθcosθ+2sin^2θ =3-4sin2θ+2*1-cos2θ/2・・・(1) =4-(4sin2θ+cosθ)・・・(2) =4-√(17)sin(2θ+α) ・・・ と書いてあるんですが (1)と(2)の変形はどうやっているんでしょうか? あと 積和の公式sinθcosθ=1/2{sin(θ+θ)+sin(θ-θ)}の sin(θ-θ)の部分はsin0になるんですがsin0=0でいいんでしょうか? 回答よろしくお願いします。

  • 三角関数の問題について

    y=sin^2x+√5sinxcosx+3cos^2x (0≦x<π/2)の最大値と最小値を求めよ。 2直線4y+3x-2=0 -3y+x+5=0のなす角をθとするとき、cosθの値を求めよ。 この二つの問題の解き方がいまいち分かりません。 できるだけ詳しく解説お願いします。

  • 三角関数の最大・最小の問題

    「0≦θ≦π/2において、 (2cosθ-3sinθ)sinθの最大・最小を求めよ」という問題がわかりません。 これは、与式=3/2cos2θ+sin2θ-3/2の様に変形して、合成すればいいんでしょうか?  アドバイス願います。