• ベストアンサー
  • すぐに回答を!

三角関数の微分(III)

S=π/2sin^{2}x - x + 1/2sin2x (0<x<π/2) Sが最大となるtanxの値を求めよ。 ds/dx=cos^{2}x(πtanx-2tan^{2}x) としてtanxの増減表を書いてtanx=π/2と出ています。 これはtanxが0<tanx<1の範囲だから、xが増加するに従ってtanxも増加するのでtanxの増減表を書いてもいいと考えて良いのでしょうか? 「0<x<πで常にpsinx≦1/(1-cosx)を満たすpの最大値を求めよ。」 で定数分離をした後、微分して、(2cosx+1)(-cosx+1) となりこれをcosxでの増減表を書いたら全く増減が反対になります。 (なぜかはわかりますが) 上のtanの考え方はあっていますでしょうか?

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数256
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
noname#66248

S=π/2sin^{2}x - x + 1/2sin2x ()を付けて上の式を正確に書かなければ、dS/dx が確認できない。 dS/dx=cos^{2}x(πtanx-2tan^{2}x) が正しいとして cos^{2}x は常に正だから、dS/dx は、π・tanx-2tan^{2}x が 正であれば増加、負であれば減少となる。 連続関数であるから、dS/dx が増加から減少にかかるとき、つまり dS/dx=0 のとき、最大値を取る。tan(x)>0 だから π-2tan(x)=0 のとき最大値を取る。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 三角関数の微分の方法

    今数学3に入って、三角関数の微分で困っています。 教科書の三角関数の微分の公式では、 (1)  (sin(x))’=cos(x) (2)  (cos(x))’=-sin(x) (3)  (tan(x))’=1/{cos(x)}^2 と書いてあります。 ですが、(1)を用いた(2)の証明のところで (cos(x))’={sin(x+π/2)}’=cos(x+π/2)・(x+π/2)’=-sin(x) となっています。 また、例題では、 (1)y=sin(2x-1) を微分せよ  y’=cos(2x-1)・(2x-1)’=cos(2x-1)・2=2cos(2x-1) となっています。 なぜ、公式の証明のところでは、cos(x+π/2)に(x+π/2)’をかけるのでしょうか? なぜ、例題でも cos(2x-1)に(2x-1)’をかけるのでしょうか? はじめの公式から読み取れず困っています。 どうか返答お願いします。

  • 三角関数

    (cos2x+sin2x+1)/cos2xsin2x 0<x<π/4の最小値についてですが、図形的に2x=π/4の時だろうというのはわかるのですが、微分しないで求まらないでしょうか?自分はtanxのみの式にしてもうまくいきませんでした。よろしくお願いします。

  • 三角関数

    問(1)方程式を解く 0≦x<2πの時 cos2x=cosx cos2x=cosx cos2x-cosx=0 cos(2x-x)=0 cosx=0 ∴x=0,π/2,3π/2 だと思ったのですが、答えが違います。どこが間違っているのでしょうか? 問(2)不等式を解く 3√3sinx+cos2x-4<0 これはどうやっていいか全くわかりません。先ずsinかcosかどちらかにそろえると思うのですが… 問(3)最大値、最小値を求める。 0≦x<πの時 y=cos^2x+sinx y=cos^2x+sinx =1-sin^2x+sinx (sinx=tとおき) =-t^2+t-1 =-(t^2-t)-1 =-(t-1/2)^2+5/4 と最大値が5/4とはわかるのですが最小値はどうやって求めたらいいのでしょうか?与式に0orπを代入するのですか? 問(4)最大値、最小値を求める 0≦x<π/2の時 y=cos^2-4cosxsinx-3sin^2x これは因数分解できないと思うのですが、どうすればいいのでしょう。-4cosxsinxのところがどうしても整理できないのですが(sin,cosどちらかにそろえること) どれか一つでもいいのでよろしくお願いします。

その他の回答 (1)

  • 回答No.2
noname#75273

>> これはtanxが0<tanx<1の範囲だから、 0 < x < π / 2 なので、tanx の範囲は、0 < tax ではないでしょうか。 >> tanxの増減表を書いてもいい というのは、 tan x , dS / dx , S の増減表のことでしょうか。 dS / dx は, S を x で微分した値なので、上記の増減表を作っても意味がありません。 正確には、x , dS / dx , S の増減表を作って、最大の S を求めます。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 三角関数の微分

    三角関数の微分が解けません。 三角関数の法則を利用して答えは纏めた形になるのですが、上手く纏める方法が思いつきません。 1. y=sin^2xcos^3(2x) y'=2sinxcosx*cos^3(2x)+sin^2x*(-6)cos^2xsinx Ans:y'=sin2xcos^2(2x)*{1-8sin^2(x)} 2sinxcosxを2倍角の公式を利用したりして纏めましたが答えにたどり着けません。 また、 2. y=sinx/1+tan^2(x) y'=cosx{1+tan^2(x)}-sinx*2tanx{1/cos^2(x)} Ans:y'=cosx{1-3sin^2(x)} 纏め方について助言お願いします。

  • 微分 三角関数

    y=cosx/sinxを微分すると y'={(cosx)'sinx-cosx(sinx)'}/(sinx^2) ={-sinxsinx-cosxcosx}/sin^2x ={-(sin^2x+cos^2x)}/sin^2x =-1/sin^2x で ={-(sin^2x+cos^2x)}/sin^2xからどうして =-1/sin^2xになるんですか? 教えてください

  • 三角関数

    先程は失礼しました。 y=3(sinx)^2+4sinxcosx-(cosx)^2 が y=3* (1-cos2x)/2 + 2sin2x - (1+cos2x)/2 になる過程がよく分かりません。 sin2x-cos2x=√2sin(2x- π/4)  となる過程もよく分かりません。 sin2x+cos2X  だったらどうなるのでしょうか。

  • 三角関数を時間微分すると・・・

    まず、(a,bは定数)x=acosθ+bcosψを時間(t)で微分します。 するとdx/dt=-a(dθ/dt)sinθ-b(dψ/dt)sinψ-(1)と なるのはなんとなく分かるのですが。 (1)式をさらに時間(t)で微分すると、 (d^2x/dt^2)=-a(d^2θ/dt^2)cosθ-b(d^2ψ/dt^2)sinψ-b(dψ/dt)^2cosψ-(2)になるのがまったく分かりません。 どうして(1)式をさらに時間微分するとψの項が2つ出現するのか がまず?です。 何度も先生に聞いたりしましたが、よく分かりませんでした。 どなたか、解き方を教えて下さい。 よろしくお願いします。

  • 三角関数のグラフのうちのtanは

    sinとcosのグラフは書けるようになりました。 平行移動する時は、(0、π/2、π、3π/2、2π)を平行移動させた所をx軸に書けばいいんですよね? あと、y軸の交点も入れればいいんですよね? ですが、y=tanxはxどの範囲で書けばいいんですか sinxやcosxは0~2πの間ですよね。んでπ/2、π、3π/2、2πに点打ちますよね。tanだと周期π?だから、sinとかcosが、π/2、π、3π/2、2πに点打つのに対して、tanxはπ/2とπに点打って結べばいいんですか?

  • 数III 定積分教えてください

    (1)∫(0&#65374;1/2) √(1&#65293;4x^2)dx (2)∫(0&#65374;2) dx/(9&#65293;x^2) (3)∫(3&#65374;4) dx/(x^2&#65293;2x) (4)∫(0&#65374;1) (4+x)/√(4&#65293;x^2)dx (5)∫(0&#65374;π/3 ) {tanx/(1+cosx)}dx (6)∫(π /6&#65374;π/3 ) {(sinx+cosx)/(sinx cosx)}dx 式変形を教えてください。 詳しいとありがたいです。

  • 三角関数

    授業に参加してるのが1/5以下ってどうですかね? 普通っちゃ普通なのかもしれないけど、自分はあんま授業妨害する人じゃないので分かりませんね。 y=cosxとかy=sinxのグラフは、π/2、π、3π/2、2πってx軸に書いて、それと対応する値をyに点打つじゃないですか。y=sinπ/2なら、π/2から上に上がって、1の所に点打ちますよね。 じゃあy=cos(x-π/4)のグラフは、π/2、π、3π/2、2πの+1/4した値をx軸上に書いて、それと対応する値をy軸に点打てばいいんですか?π/2なら1/4平行移動したら、3π/4じゃないですか。 だから、x軸上に3π/4って書いて、yは何したらいいんだか分かりませんけど(1+1/4?)‥ あと、このグラフy軸に接するのが1/√2らしいんですが、0代入すると、cos(-π/4)なんですよね。-1/√2じゃないんですか? あと、2πまでしか基本的にはグラフ書かないけど、たまに9/2πとか2π超えて書くのもありますよね。 それとy=tanxのグラフはx軸にいくつを書くんですか? y=cosxとかy=sinxは、π/2、π、3π/2、2πってx軸に書きますよね。 あと、sinx=-1/2(0≦x≦2π) これとかどうするんですか。 出題されてから言えって感じかもしれないですけど、 sinじゃなくて、cosとかtanになったらどうするんですか?

  • 三角関数の積分

    ∬sin(2x+y)dxdy(範囲は,0≦x≦π/2,x≦y≦2x)の値を求めよ。 自分なりに計算してみたら =∫「0→π/2」∫「x→2x」「sin(2x+y)dydx =∫「0→π/2」[-cos(2x+y)]「x→2x」dx =∫「0→π/2」-cos4x+cos3xdx =[-1/4sin4x+1/3sin3x]「0→π/2」 =-1/3 になってしまいました。積分でマイナスの値はおかしいと思いますがどこがおかしいのでしょうか?アドバイスお願いします。

  • 三角関数

    よろしくお願いいたします。 0 <θ<π/2とする。 sinθ-cosθ=1/2のとき、sin2θ=3/4, さてtanθ=? という問題です。 解答は、 2sinθcosθ=3/4の両辺をcosθ^2で割って整理すると 2tanθ=1/cosθ^2=1+tanθ^2であるからX=tanθとおくと、 3X^2-8X+3=0よりX=4±√7・・・※ ここで 0 <θ<π/2かつsinθ-cosθ=1/2>0よりX-1>0であるから、 X=4+√7 ※までは理解できたのですが、そこからしぼりこむところが疑問です。解答はここまでしか書いていないのですが、そんな単純なことなのでしょうか。どうしてX-1>0といえるのでしょうか。 X=4-√7はだいたい4 &#8211; 2.6くらいでしょうか。sinθ-cosθ=√2sin θ(θ-π/4)=1/2など変形してみたのですが、それ以上前に進めませんでした。勉強不足ですが、どなたかアドバイスをお願いいたします。

  • 三角関数の積分

    1/三角関数 の積分は必ずできると聞いたのですが、本当でしょうか。 例えば 1/sinx です。 ∫1/sinxdx を試してみたのですが、うまくできませんでした。 ∫sinx/sin^2xdx とし、 ∫sinx/(1-cos^2x)dx  cosx=tとおく。 dx = -1/sinx 与式 = -∫1/(1-t^2)dt = -(1/2)∫{(1/1+t)+(1/1-t)}dt = log|sinx| + C となりました。 しかし、これを微分しても与式になりません。 どこか間違っているのでしょうか。 答えでは、log|tan1/2| となっていたと思います。 あと、 ∫1/cosxdx と ∫1/tanxdx も答えだけでも良いので教えていただきたいです。