• 締切済み

不定形の極限値

不定形の極限値の範囲で下の2つの定理の証明がわからなくて困っています。 どなたか解説をお願いします。 定理1 f(x),g(x)はある開区間(a,∞)で微分可能な関数とする。 もし、lim(x→∞)f(x)=lim(x→∞)g(x)=0が成立し、 極限 lim(x→∞) f'(x)/g'(x) = L が存在すれば lim(x→∞) f(x)/g(x) = L が成り立つ。 定理2 f(x),g(x)はaを含むある開区間で微分可能な関数とする。 もし、lim(x→a)f(x)=lim(x→a)g(x)=∞が成立し、 極限 lim(x→a) f'(x)/g'(x) = L が存在すれば lim(x→a) f(x)/g(x) = L が成り立つ。   

みんなの回答

  • tecchan22
  • ベストアンサー率53% (41/76)
回答No.3

ロピタルの定理の周辺ですね。 g’が連続であることを仮定すれば、わりと素朴に出来ます。 (そう仮定しても応用上はほとんど問題ないでしょう?) 定理1 f’/g’が極限を持つことから、あるbに対し、x≧bなら、g’(x)≠0でなければなりませんが、g’が連続から、x≧bでg’は常に正または常に負となります。 x≧bでg’が常に正(負)のとき、x≧bでgは常に負(正)になります。(∵g→0) ここではx≧bでg’が負として解きます。正のときも同様です。 仮定から、 任意のε>0に対して、あるaが存在して、 x≧aならば、|{f’(x)/g’(x)}-L|<ε ですね。 ここでaはbよりも大きくとっておきます。 変形して、 (L-ε)g’(x)<f’(x)<(L+ε)g’(x) (∵x≧a(≧b)の範囲で、g’は常に正) これがx≧aで成り立つので、任意のx≧aに対し、x<yとしてx→yで積分して、 (L-ε){g(y)-g(x)}<f(y)-f(x)<(L+ε){g(y)-g(x)} y→∞として、両辺に-1をかけると、 (L-ε)g(x)≧f(x)≧(L+ε)g(x) x≧a(≧b)よりg(x)<0だから、両辺をg(x)で割って、 L-ε≦f(x)/g(x)≦L+ε  ・・・(1) つまり、任意のε>0に対してあるaがあって、x≧aのとき(1)が成り立つから、結論が得られる。(証明終) 定理2も同じような感じで出来ますよ。

  • quaRk-6
  • ベストアンサー率32% (13/40)
回答No.2

方針だけ説明しますと (i)Rolleの定理:f(x)が[a,b]で連続、(a,b)で微分可能で、f(a)=f(b)ならばf'(c)=0,a<c<bを満たす実数cが存在する。   を証明する。 (ii)Cauchyの平均値の定理:関数f(x),g(x)が[a,b]で微分可能ならば f(b)-f(a)  f'(c) ――――=――   (a<c<b)を満たすcが少なくとも1つ存在する。 g(b)-g(a)  g'(c) 但し、g(b)≠g(a),g'(x)≠0(a<c<b)である。 を証明する。 (iii)定理1、定理2を証明する

  • oyaoya65
  • ベストアンサー率48% (846/1728)
回答No.1

以下のURLに簡単な証明が載っています。 http://www.cec.yamanashi.ac.jp/~sato/lecture/lhospital/lhospital.html

関連するQ&A

  • 不定形の極限について

    お世話になっております。 分数関数の極限についての質問です。 具体的には f(x)=x^2/(x-1) のグラフを描く教科書の例題にあるような基本的なものです。 グラフを描くために、漸近線の方程式を求めるのは必要な過程と思います。 上の例題の場合、 関数f(x)の定義域x≠1に対して、x→1 の時のf(x)の極限値を求めるのに、教科書でははしょって即座に lim[x→1+0]f(x)=∞ としてますが、実際計算で有理化とかしても、「定数/0」の形になってしまうので、極限値の性質 lim[x→a]{f(x)・g(x)}=αβ (但し、lim[x→a]f(x)=α、lim[x→a]g(x)=βが前提) を利用して、g(x)=x^2、 h(x)=1/(x-1) みたいに考えたら、前者のx→1の両側極限は容易に求められますし、後者はグラフから求められます。 結果、 lim[x→1+0]f(x)=1・∞=∞ lim[x→1-0]f(x)=1・(-∞)=-∞ とようやく教科書の記述に至ったのですが、実際こんな面倒な手順でないと導けないものでしょうか? ロピタルの定理は、一応概要には触れましたが、不完全なのでご回答にはお使い下さらないでいただきたいです。 ご助言いただけると有り難いです。宜しくお願い致します。

  • 比の極限

    ある関数f(x),g(x)を考え、いずれも x->inf のとき0に収束するとします。 このとき、f(x)/g(x)の極限は不定形になるのですが、ある定数に収束しそうなとき、 証明方法として、ロピタルの定理以外に何かありますか? 分母分子を何度微分しても、不定形になるので、それ以外で何かしら証明する パターン的なものがあれば、ご教示ください。 お願いいたします。

  • 極限値と不定形

    こんにちは。高校数学2の極限に関する質問です。 参考書の問題です。 Q:次の等式が成り立つように、定数a,bの値を求めよ。   lim{(x^2+ax+b)/(x-2)} =5   x→2 A:x→2のとき 分母→0   極限をもつためには、分子→0でなければならない。   …   この問題は4+2a+b=0とし、b=-2aー4と仮定し、   lim{(x^2+ax+b)/(x-2)} =lim(x+a+2)=5    x→2              x→2  とし、2+a+2=5とし、a=1、b=-6 を求めます。 ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー x→2のとき 分母→0   極限をもつためには、分子→0でなければならない。  ここで質問ですが、↑不定形の問題ということですがなぜでしょう(?) よろしくお願いします。

  • 平均値の定理を使うときに,最初に2つの宣言があります。

    平均値の定理を使うときに,最初に2つの宣言があります。 y=f(x)は区間[a,b]で連続で,区間(a,b)で微分可能であるとき,平均値の定理より・・・となるわけですが,(1)y=f(x)は区間[a,b]で連続 (2)区間(a,b)で微分可能である ということですが,この2つは何が根拠なのですか?こういうことであってますかね? y=f(x)が,例えば,2次関数(放物線)であった場合, (1)すでにこのグラフの形を学んで知ってるので,そのグラフの形状を根拠に区間[a,b]で連続という。 (2)f(x)の導関数f'(x)があることを,すでに学んで知っている。また,f(x)が区間[a,b]で連続でなめらかであるから,f'(x)も区間(a,b)で全域で存在する。開区間になるのは,左微分係数=右微分係数=f'(a)が出来ないから,開区間になる。 ということでいいのでしょうか?

  • ロピタルの定理

    大学1年生です。 手持ちの『理工系 微積分学』(荒井正治、学術図書出版)という教科書にロピタルの定理は次のようなものとあります。 lim(a,b)はlim_(a→b) "!="は"≠" "inf"は無限大 "+-"は+と-の複合 を表すとします。 1. (a,b]で定義された微分可能な関数 f(x),g(x) が次の仮定を満たすとする。  (i) g'(x)!=0  (ii) lim(x,a+0)f(x)=lim(x,a+0)g(x)=0   または  (ii)' lim(x,a+0)f(x)=lim(x,a+0)g(x)=inf  (iii) 次式の右辺の極限が存在するかまたは+-infに発散し、次の等式が成り立つ このとき、次式の左辺の極限が存在するかまたは+-infに発散し、次の等式が成り立つ。 lim(x,a+0)f(x)/g(x)=lim(x,a+0)f'(x)/g'(x) 2. (1.で区間が(a,inf)かつlim(x,inf)の場合) (ii)の場合の証明で f(a)=g(a)=0 と定義することにより fとgが[a,b]でも連続になるためコーシーの平均値の定理を満たすようになり…としていますが、 f(a)=g(a)=0 のような定義をしても一般的なのでしょうか。私にはそのようにならない関数を見つけられないのですが、本当に存在しないのでしょうか。 また、存在するとすれば、そのような関数の場合はどのように証明するのでしょうか。 質問が多いですが、よろしくお願いします。

  • 極限値が存在する場合

    以下の問いの解答がなく、自分の解き方が正しいのか不安ですので、確認していただきたく思います。 [問い] 極限値lim(X→0) (expX-aX-b)/X**2が存在するような定数a, bを求めよ。 [my答案] 分母のX2乗はゼロになるので、分子もゼロとなり、不定形になると思いました。そしてロピタルの定理を適用しました。 ・分子もゼロになるので、Xにゼロを代入するとb=1 ・次にロピタルの定理をてきようするため、分母と分子をそれぞれxで微分する。lim(X→0) (expX-a)/2X =1/2 lim(X→0) (expX-a)/X ここで公式lim(X→0) (expX-1)/X =1を適用する。 するとa=1となる。 以上より、答えはa=1, b=1になると思います。 これで大丈夫でしょうか。 よろしくお願いいたします。

  • テイラーの定理について

    テイラーの定理は関数f(x)が、閉区間[a,b]で連続、開区間(a,b)でn+1回微分可能なのに、なぜf′(a)やf“(a)みたいにaで微分できているのでしょうか?

  • 連続性のある関数を、中間値の定理に基づいて、実数解があることを示す方法がわかりません(ToT)

    微分積分を勉強しているのですが、全く理解できない問題がありまして・・・。 【問題】 方程式3x=2^x+2^-xは、区間(0,1)の中に少なくとも一つの実数解をもつことを示せ。 【解答】 f(x)=3x-(2^x+2^-x)とおけば、f(x)は全区間Rで連続であり、 f(0)=-2<0 f(1)=3-(2+1/2)=1/2>0 である。中間値の定理(※)により、 f(x)=3x-(2^x+2^-x)=0 であるようなxが、区間(0,1)の中に、少なくとも一つ存在する。 ●○●○●○●○●○●○●○●○●○●○●○●○●○●○ ※連続関数の中間値の定理 関数f(x)が、閉区間[a,b]で、連続でf(a)≠f(b)のとき、f(a)とf(b)の値kに大して、 f(c)=k である点cが、開区間(a,b)の中に少なくとも1つ存在する。 ●○●○●○●○●○●○●○●○●○●○●○●○●○●○ 読みにくいと思いますので、添付ファイルもご覧にいただきたいのですが、どうしてf(x)=3x-(2^x+2^-x)とおけば、f(x)は全区間Rで連続になるのでしょうか? 関数f(x)が「連続であるかどうか」を調べるには、例えば、f(x)をaで微分した「lim(x→a) f(x)」と、元の関数f(x)がx=aの時、すなわち「lim(x→a) f(x)=f(a)」、「f'(a)=f(a)」となる時、連続なんですよね? ですが、f(x)=3x-(2^x+2^-x)は、変数xが指数としてくっ付いてるので、どう微分していいのやら・・・。 なので、「全区間Rは連続であり」と言われても、全くピンときません(ToT) どうして「<0」「>0」など、0から目線で証明を進めているのかもわかりません(>_<) 皆様のお力をお借しいただきたい次第です。 よろしくお願いします<m(__)m>

  • 増加関数?

    [問] f(x)=x-sinx は閉区間[0,π/2]で増加関数であることを証明せよ。 1.閉区間[0,π/2]で連続で、開区間(0,π/2)で微分可能でかつf'(x)>0ならば、f(x)は閉区間[0,π/2]で増加関数である。 2.f(x)がある区間で微分可能ならば、f(x)はその区間で連続である。 この2つの定理を利用して、 開区間(0,π/2)で微分可能を求めて、かつ、左端0で右側微分可能、右端閉区間π/2で左側微分可能。 ・・・・・・(ア) よって閉区間[0,π/2]で微分可能となり、連続となる。 次にf'(x)>0を求めて増加関数となる。 このように解いていこうと思うのですが、肝心の最初の(ア)の解き方が分かりません。どのようにすればいいのでしょうか? また、この方針はあっているのでしょうか?よろしくお願いします。

  • 極限値

    こんにちは。今、極限値の勉強をしているのですが、いくつか不明な点があるので質問させて下さい。 まず、lim tan^-1*X/X の解き方の仮定を教えてください。      x→0 次に、x→+0はプラスがつく事により、問題の解き方の仮定でただの0とどう変わるんでしょうか。 最後に不定形の極限値はロピタルの定理を用いると簡単に解けますが、ただの極限値か、不定形の極限値だと簡単に見分ける方法はないでしょうか。 ご回答お願いします。