• 締切済み
  • 困ってます

極限値と不定形

こんにちは。高校数学2の極限に関する質問です。 参考書の問題です。 Q:次の等式が成り立つように、定数a,bの値を求めよ。   lim{(x^2+ax+b)/(x-2)} =5   x→2 A:x→2のとき 分母→0   極限をもつためには、分子→0でなければならない。   …   この問題は4+2a+b=0とし、b=-2aー4と仮定し、   lim{(x^2+ax+b)/(x-2)} =lim(x+a+2)=5    x→2              x→2  とし、2+a+2=5とし、a=1、b=-6 を求めます。 ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー x→2のとき 分母→0   極限をもつためには、分子→0でなければならない。  ここで質問ですが、↑不定形の問題ということですがなぜでしょう(?) よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数582
  • ありがとう数2

みんなの回答

  • 回答No.2
noname#39420
noname#39420

関数f(x),g(x)について lim (f(x)/g(x))=b, lim g(x)=0ならば、 x→a x→a lim f(x)=lim {(f(x)/g(x))・g(x)}=lim (f(x)/g(x))・lim g(x) =b・0=0 (x→a)

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます。 素晴らしいですね。感心しました。

質問者からの補足

回答ありがとうございます。 素晴らしいですね。関心しました。

関連するQ&A

  • 極限値の問題

    lim(x→1){(x^2+ax+b)/(x-1)}=3を満たす定数a,bを求めよ という問題なんですが lim(x→1)(x-1)=0であるから lim(x→1)(x^2+ax+b)=0 解答にはこのように始まっているのですが この命題の解釈を 「xは1になるのでそれだと分母が0になってしまい、0での除法は数学的にありえないので 分子も0になるしかない」 とこんな感じに僕なりにしてみたんですがあっているでしょうか? それと 微分の問題をある程度やっていて、それなりに解けるようになってきたんですが 未だに極限値というのが微妙な理解です、テキストを読んでも難しい言葉で書かれており、何がなにやらというのが本音です。 今僕が考えている極限値というのは、3次関数のグラフを書いた時に出来る山のような曲線というちょっとわけのわからない理解なんですが 極限値とはなんなのかという簡単な解説をよろしくお願いします。

  • 極限値

    こんにちは。今、極限値の勉強をしているのですが、いくつか不明な点があるので質問させて下さい。 まず、lim tan^-1*X/X の解き方の仮定を教えてください。      x→0 次に、x→+0はプラスがつく事により、問題の解き方の仮定でただの0とどう変わるんでしょうか。 最後に不定形の極限値はロピタルの定理を用いると簡単に解けますが、ただの極限値か、不定形の極限値だと簡単に見分ける方法はないでしょうか。 ご回答お願いします。

  • 3つの変数の極限値

     学校で出た宿題の中で、 次の等式が成り立つように、定数a,b,cの値を求めよ。 lim(x→-1){(x^3+ax+b)/(2x^3+3x^2-1)}=c  という等式なのですが、分母に-1を代入したら0になりそうなので、分子を0にしようとして、  x^3+ax+b=0 -1-a+b=0 b=a+1  として、 lim(x→-1){(x^3+ax+a+1)/(x+1)^2*(2x-1)} lim(x→-1){{(x+1)(x^2-x+1)+a(x+1)}/{(x+1)^2*(2x-1)}}=c lim(x→-1){(x^2-x+1+a)/{(x+1)(2x-1)}}=c  までこぎつけたのですが、変数aとcが残っていて、どうしようもできません。  この問題はどのようにしてとけばいいのでしょうか?  どなたかご教授ください。

  • 回答No.1

>x→2のとき 分母→0 >  極限をもつためには、分子→0でなければならない。 > > ここで質問ですが、↑不定形の問題ということですがなぜでしょう(?) 分子も0の不定形で無い場合、すなわち   lim{(x^2+ax+b) ≠ 0   x→2 なら   lim{(x^2+ax+b)/(x-2)} =+∞  or -∞   x→2 になって5になることは有り得ないからです。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます。 そういうことだと思いますが、なんだか頭が痛くなってきました。

関連するQ&A

  • 極限値

    (1) lim[n→∞]√(x+3)-√(x)/√(x+2)-√(x+1) 分子有理化をして、 分子分母に√(x+3)-√(x)をかけて、 lim[n→∞] 3 /{√(x+2)-√(x+1)}{√(x+3)-√(x)} さらに分子分母をxで割りました。 3/∞になって0になります。 しかし、解答は3です。 (2) 数列{a_n}の極限値を求める。 a_n=1^2+2^2+…+n^2/n^3 こちらは全く分かりません。 分子分母をn^2で割りましたが、 なにも進みません…。 なにかヒントをお願いします。

  • 極限に完全な不定形はあり得ますよね?

    お世話になります、以下の極限の問題で行き詰まり困っております。 皆様のお知恵をご教授願います。 lim[x,y→0] √|xy| / √(x^2+y^2) の極限を求めたいのですが、 x=y方向から (x, y) → (0,0)の時、√|xy| / √(x^2+y^2)の接線が定まらない事は何となく理解できるのですが… x=yの条件下では、分子も分母も同時に0になり、 lim[x,y→0] √|xy| / √(x^2+y^2) =0/0…不定形 x≠yの条件下では、分子(積)が分母(二乗和)より先に0になるので、 im[x,y→0] √|xy| / √(x^2+y^2) =0 以上の2通りが解になると考えても良いのでしょうか? ご指導願います。

  • 極限値が存在する場合

    以下の問いの解答がなく、自分の解き方が正しいのか不安ですので、確認していただきたく思います。 [問い] 極限値lim(X→0) (expX-aX-b)/X**2が存在するような定数a, bを求めよ。 [my答案] 分母のX2乗はゼロになるので、分子もゼロとなり、不定形になると思いました。そしてロピタルの定理を適用しました。 ・分子もゼロになるので、Xにゼロを代入するとb=1 ・次にロピタルの定理をてきようするため、分母と分子をそれぞれxで微分する。lim(X→0) (expX-a)/2X =1/2 lim(X→0) (expX-a)/X ここで公式lim(X→0) (expX-1)/X =1を適用する。 するとa=1となる。 以上より、答えはa=1, b=1になると思います。 これで大丈夫でしょうか。 よろしくお願いいたします。

  • 極限と係数決定

    等式(x→1)lim(x^2+ax+b/x^2+x-2)=-1 この問題に、説明がありました。 x→1の時、分母→0だから、有限な極限値-1となるためには、分子→0となる必要がある。 これは、いったいどういうことなんでしょうか? xを限りなく1に近づけたとき、極限値は-1。 分子分母が0とは、何のことかわかりません。 確かに、分母が0にならないようにすると、分子を(x-1)で割ると、a+b+1と余りがでます。このあまりが、0でないと、(x-1)が消えないので困りますが、説明のような言い回しが理解できないので困ってます 独学で勉強してるので、知識をお借りしたいです。よろしくおねがいします。

  • 極限値 問題

    極限値 問題 lim[x→0](sin^2x・cosx) /(1-cosx) 1+cosxを分子と分母に掛けて、分母が0を解消して lim[x→0]cosx+cos^2x=2 答えは合っていますでしょうか? ご回答よろしくお願い致します。

  • 不定形の極限値

    不定形の極限値の範囲で下の2つの定理の証明がわからなくて困っています。 どなたか解説をお願いします。 定理1 f(x),g(x)はある開区間(a,∞)で微分可能な関数とする。 もし、lim(x→∞)f(x)=lim(x→∞)g(x)=0が成立し、 極限 lim(x→∞) f'(x)/g'(x) = L が存在すれば lim(x→∞) f(x)/g(x) = L が成り立つ。 定理2 f(x),g(x)はaを含むある開区間で微分可能な関数とする。 もし、lim(x→a)f(x)=lim(x→a)g(x)=∞が成立し、 極限 lim(x→a) f'(x)/g'(x) = L が存在すれば lim(x→a) f(x)/g(x) = L が成り立つ。   

  • 微分の極限値の問題が解けません

    lim x→0 (x^4-2x+3)/(x^6-x^2-2) の極限値を求めよという単純な問題なのですが、分母分子の因数分解がどうしても出きません。よろしくお願いします。

  • 極限値を求める問題です。

    次の極限値を求めよ。 lim(x,y)→(1,1) (x-1)^3+(y-1)^3/(x-1)^2+(y-1)^2 (x-1)^3+(y-1)^3が分子で (x-1)^2+(y-1)^2が分母です。 よろしくお願いします。

  • 極限値を求める問題です。

    次の極限値を求めよ。 lim(x,y)→(1,1) (x-1)^3+(y-1)^3/(x-1)^2+(y-1)^2 (x-1)^3+(y-1)^3が分子で (x-1)^2+(y-1)^2が分母です。 よろしくお願いします。

  • 極限値の求め方について

    極限値を求める問題で、つまずいたところがあります。 lim x→-∞ (3x+2)/(x^2+1)^1/2 という問題なので、当初は分子と分母をxで割ることで lim x→-∞ (3+2/x)/(1+1/x^2)^1/2に変形し、答えを3と導出したのですが正答は-3とのことです。 x=-tとおき、lim t→∞ (-3t+2)/(t^2+1)^1/2とすれば-3が導出できることはわかったのですが 当初のやり方のどこに不具合があったかわかりません。 分母の(x^2+1)^1/2を、負の値であるxで割ろうとする事が問題なのでしょうか? 自分なりに理由を探索したのですが、いまいち確証が持てません。ご回答お願いします。

専門家に質問してみよう