• ベストアンサー

連続性のある関数を、中間値の定理に基づいて、実数解があることを示す方法がわかりません(ToT)

微分積分を勉強しているのですが、全く理解できない問題がありまして・・・。 【問題】 方程式3x=2^x+2^-xは、区間(0,1)の中に少なくとも一つの実数解をもつことを示せ。 【解答】 f(x)=3x-(2^x+2^-x)とおけば、f(x)は全区間Rで連続であり、 f(0)=-2<0 f(1)=3-(2+1/2)=1/2>0 である。中間値の定理(※)により、 f(x)=3x-(2^x+2^-x)=0 であるようなxが、区間(0,1)の中に、少なくとも一つ存在する。 ●○●○●○●○●○●○●○●○●○●○●○●○●○●○ ※連続関数の中間値の定理 関数f(x)が、閉区間[a,b]で、連続でf(a)≠f(b)のとき、f(a)とf(b)の値kに大して、 f(c)=k である点cが、開区間(a,b)の中に少なくとも1つ存在する。 ●○●○●○●○●○●○●○●○●○●○●○●○●○●○ 読みにくいと思いますので、添付ファイルもご覧にいただきたいのですが、どうしてf(x)=3x-(2^x+2^-x)とおけば、f(x)は全区間Rで連続になるのでしょうか? 関数f(x)が「連続であるかどうか」を調べるには、例えば、f(x)をaで微分した「lim(x→a) f(x)」と、元の関数f(x)がx=aの時、すなわち「lim(x→a) f(x)=f(a)」、「f'(a)=f(a)」となる時、連続なんですよね? ですが、f(x)=3x-(2^x+2^-x)は、変数xが指数としてくっ付いてるので、どう微分していいのやら・・・。 なので、「全区間Rは連続であり」と言われても、全くピンときません(ToT) どうして「<0」「>0」など、0から目線で証明を進めているのかもわかりません(>_<) 皆様のお力をお借しいただきたい次第です。 よろしくお願いします<m(__)m>

  • dj-s
  • お礼率81% (228/280)

質問者が選んだベストアンサー

  • ベストアンサー
回答No.1

>関数f(x)が「連続であるかどうか」を調べるには、例えば、f(x)をaで微分した「lim(x→a) f(x)」と、元の関数f(x)がx=aの時、すなわち「lim(x→a) f(x)=f(a)」、「f'(a)=f(a)」となる時、連続なんですよね? いろいろ違います。 まず、 >f(x)をaで微分した「lim(x→a) f(x)」 とありますが、微分係数の定義からするとf`(a)=lim(x→a)(f(x)-f(a))/(x-a)です。連続と混合されてると思います。 f(x)が点aで連続であることの定義はlim(x→a) f(x)=f(a)となることです。この定義に微分は介入しません。 たとえば、g(x)=2^xとおけば、lim(x→1)g(x)=lim(x→1)2^x=2となりg(1)と一致するのでg(x)はx=1で連続ですし、同様にx=2でも3でも連続になります。一般的なaにおいてもlim(x→a)g(x)=lim(x→a)2^x=2^aとなりg(a)と一致するので全実数区間で連続です。

dj-s
質問者

お礼

すいませんごっちゃになっていました(>_<) 「全区間Rで連続である」というのが、なんとなくわかりました! f(x)=3x-(2^x+2^-x) も、lim(x→1)の時と、x=1を入れた時が、一致するんですね。 そしてlim(x→a)の時も、x=aを入れた時も一致するから、連続した関数なのですね(^_^;) 具体例も出していただき、ありがとうございます<m(__)m>

その他の回答 (2)

回答No.3

打ち間違えかもしれませんが、中間値の定理の定理が変です。 f(a)とf(b)の間の値kに対して、f(c)=kである点cが、開区間(a,b)の中に少なくとも1つ存在する。 が本当。 f(x)=0となる値が存在することを示したいので、0目線になります。 0がf(0)とf(1)の間にあることを示す必要があるので、f(0)<0とf(1)>0が必要です。

dj-s
質問者

お礼

訂正ありがとうございます! 添付画像も間違えていました、f(0)=-2<0と、f(1)=3-(2+1/2)=1/2>0になってなかったですね、すいません(>_<)

noname#101087
noname#101087
回答No.2

>f(x)=3x-(2^x+2^-x)は、変数xが指数としてくっ付いてるので、どう微分していいのやら・・・ 連続性をみるのは微分に限るわけでもありませんが、どうしても微分してみたけりゃ、  2^x = e^{x*LN(2)} と指数関数にするのがふつう。 >どうして「<0」「>0」など、0から目線で証明を進めているのか ..... x 区間の片端で「<0」、他端で「>0」ならば、その間に f(x) の零点があるはず、だからでしょうね。 そんな区間が、いつもうまく見つけられる保証も無いのですけど。   

dj-s
質問者

お礼

わかりました、微分して示すわけではないみたいですね! いやはや勉強になります(>_<) x 区間の片端で「<0」、他端で「>0」ならば、その間に f(x) の零点があるはず・・・ ですか。 確かにそうですね。 f(0)=-2、f(1)=1/2、となれば、f(a)=0を満たすaが、区間(0,1)の間にあるはず・・・ という考えにいたりますよね、いや~その考えになかなか至ることができませんでしたが、なんとなく理解できました、ありがとうございます(^_^;)

関連するQ&A

  • 中間値の定理

    中間値の定理、、、 3次方程式x^3-x^2-2x+1=0は区間(-2.1)に少なくとも1つの実数解をもつことを証明せよ f(x)=x^3-x^2-2x+1とする f(-2)=(-2)^3-(-2)^2-2×-2+1=-7 f(1)=-1-1+2+1 f(-2)とf(1)は互いに異符号である よって中間値の定理により f(x)=0を満たすxが少なくとも1つ存在する 中間値の定理って 1 関数f(x)が閉区間[a,b]で連続で、f(a)≠f(b)の時f(a)とf(b)の間にある任意のkに対してf(c)=kを満たす点cが少なくとも一つ存在する。 2 特にf(x)が閉区間[a,b]で連続で、f(a)とf(b)が異符号の時f(x)=0を満たすx即ち方程式f(x)=の解が少なくとも一つ存在する。 これって何で中間値の定理の2番使って証明してますが何で2番使うんですか? だって互いに異符号なのを最初に示してる時点で2を使ってますよね 2は中間値の定理ですよね あとこれがどうなったら、公式1にすればいいんですか?

  • 中間値の定理とその系について

    中間値の定理について (1)中間値の定理は逆について真でしょうか。つまり「関数f(x)が区間[a,b]で連続で、f(a)≠f(b)ならば、f(a)とf(b)の間の任意の値kに対して、f(c)=k、a<c<bを満たすcが少なくとも一つ存在する」の逆は真かどうか (2)中間値の定理の系について、[関数f(x)が区間[a,b]で連続で、f(a)≠f(b)、f(x)が単調増加または単調減少ならば、 f(a)とf(b)の間の任意の値kに対して、f(c)=k、a<c<bを満たすcがただ1つ存在する。」 の逆は言えますか? 高校数学の範囲で詳しい解説をお願いします!

  • 中間値の定理

    実数a、bに対して連続関数f(x)が lim[x→1]f(x)/(x-1)=a、lim[x→2]f(x)/(x-2)=b を満たしている ab>0であるとき、1≦x≦2の範囲で方程式f(x)=0は少なくとも3個の解を持つことを中間値の定理を用いて示せ 示し方やヒントなどを教えてください

  • 中間値の定理の応用

    中間値の定理からつぎのことはいえますでしょうか? 「関数f(x)が区間[a,b]で連続で、f(a)≠f(b)、f(x)が単調増加または単調減少ならば、 a<x<bでf(x)=cを満たすcがただ1つ存在する。」 高校数学の範囲でお願いします。

  • 平均値の定理のcをbの関数と考えると・・・

    平均値の定理: a < b とし、f(x) を閉区間 [a, b] で連続で、開区間 (a, b) で微分可能な関数とする。このとき開区間 (a, b) 上に、ある点 c が存在して {f(b)-f(a)}/{b-a}=f '(c) が成り立つ。 これから述べる質問のために、少し設定や記号を変更します。 関数f(x)は[0,∞)で連続で、(0,∞)で微分可能。 また簡単のために、f(0)=0 と設定します。 ここで、微分可能関数f(x)において、区間[0,x](ただしx>0)を考えると、 {f(x)-f(0)}/{x-0}=f '(c) つまり、 f(x)/x=f '(c) となるcが 0<c<x の範囲に存在します。 cは一意的に取れるとは限りませんが、とりあえず一つのcを取ります。 ここで、xに対して、cが取れると考えて、c(x)と書きます。 xを動かすと、c(x)は連続関数となるようにできるのでしょうか?

  • 中間値の定理?

    中間値の定理とは 「連結な集合 S 上の関数で連続である関数f(p)が、  A, B ∈ S かつ f(A) ≠ f(B)のとき、  f(C)=r ∈(f(A), f(B))  となる C∈Sが存在する」 と教わりました。 質問) 「C は A,Bを結ぶ曲線状」でなくていいのでしょうか?(中間値なので・・) なお、「連結」というのは、集合内の任意の2点が連続曲線で結べることだそうです。

  • ロルの定理の前提『[a,b]で連続、(a,b)で微分可能』について。

    皆様、お世話になります。よろしくお願いします。 __________________________________ ロルの定理 f(x)が閉区間[a,b]で連続、開区間(a,b)で微分可能でf(a)=f(b) ならばf'(ξ)=0、a≦ξ≦bなる点ξが存在する。 ___________________________________ の前提部分の『閉区間[a,b]で連続、開区間(a,b)微分可能』 がいまいちよく分かりません。 定義域の端点においても微分可能が定義でき、なおかつ微分可能であれば連続であるので 『閉区間[a,b]で連続、開区間(a,b)微分可能』を『閉区間[a,b]において微分可能』とまとめてしまっても良いような気もするのですが、 このようにしない理由は何なのでしょうか? よろしくお願い致します。

  • 陰関数の定理がわかりません

    陰関数の定理について、 証明はまだ習わないで、定理だけいきなり出てきたのですが、 読んだだけではいまいち意味がつかめませんでした。 この定理が何をいおうとしているかわかり易く 説明していただけないでしょうか? (漠然とした質問で申し訳ありません) ___________________________________  陰関数の定理: f(x, y) をR2 におけるC1 級関数とし, 点(a, b) において f(a, b) = 0; fy(a, b) ≠ 0とする. このときa を含むある小さな開区間I をとれば I の上で定義されたC1 級関数 y = φ(x) で次の条件を満たすものがただ1つ存在する: b = φ(a), f(x, φ(x)) = 0 (x は 閉区間I内), さらに φ’(x) = -{fx(x, φ(x))}/{fy(x, φ(x)} が成立する. ___________________________________

  • 解析学の連続関数?の問題でこまっています

    教えていただきたいのは、以下の問題です。 f[a,b]→Rが [a,b] 上連続で、f の取る値がすべて有理数ならば f は定数関数になることを示せ ヒント:中間値の定理 f[a,b]→Rが[a,b]上で連続とすると、fはf(a) とf(b)の中間の値をすべて取る 有理数の稠密性  任意の実数 x と任意のε>0に対しある有理数 q で|x-q|<εを満たすものが存在する よろしくおねがいします。

  • 凸関数は連続的微分可能?

    私は専攻が物理な門外漢なので、表現に不備がありまくりだと思うのですが、何とかよろしくお願い致します。 上に凸の関数が  f(λa+(1-λ)b) ≧ λf(a) + (a-λ)f(b)  a,b は任意の実数 λは 0<λ<1 を満たす任意の実数 と定義されているとすると、折れ曲がった部分を持つ関数(例えば、傾き2と傾き1の直線が連続に繋がってる点があるような。つまりそこでは微分不可)も上に凸の関数と言えます。 しかし、  上に凸の関数は、それが定義されている区間の上で連続的微分可能 という定理があるらしいのですが、連続的微分可能ということは、その区間の任意の点で微分可能ということが前提されているのではないでしょうか?しかし、それだと微分不可の点があってもいいという上の主張と矛盾してしまいます。 連続的微分可能は次のような定義で書いてあります。  ある領域で、すべての1階の偏導関数が存在して、それらがすべて連続である関数 1階導関数が存在して、それが連続であるためには、すべての点で微分可能でないとダメだと思うのですが、その辺に間違いがあるのでしょうか…? どうぞよろしくお願い致します。