• ベストアンサー
  • 暇なときにでも

極限値をあらわす

f(x)が微分可能なとき次の極限値をf(a),f ’(a)であらわす問題で 1、lim f(a+2h)-f(a) / h   h→∞ 2、lim x^2・f(a)-a^2・f(x) / x-a    x→a の解き方を教えてください A 1、2f ’(a) 2、2a・f(a)-a^2・f ’(a)

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数137
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • info22_
  • ベストアンサー率67% (2650/3922)

1 2h=kとおけば lim f(a+2h)-f(a) / h h→∞ =lim f(a+k)-f(a) / (k/2) k→∞ =2lim f(a+k)-f(a) / k k→∞ =2f'(a) 2 lim {x^2・f(a)-a^2・f(x)} / (x-a) x→a =lim {x^2・f(a)-a^2・f(x)} / (x-a) x→a =lim {(x^2-a^2)f(a)-a^2・(f(x)-f(a))} / (x-a) x→a =lim {(x+a)(x-a)f(a)-a^2・(f(x)-f(a))} / (x-a) x→a =lim (x+a)(x-a)f(a) / (x-a) x→a -lim a^2・(f(x)-f(a)) / (x-a) x→a =lim (x+a)f(a) x→a -lim a^2・(f(x)-f(a)) / (x-a) x→a =(a+a)f(a) -(a^2)lim (f(x)-f(a)) / (x-a) x→a =2a・f(a)-a^2・f'(a)

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 極限値の問題です

    次の極限値を求めよ。 lim[n→∞] 1/n {(1+1/n)^2 + (1+2/n)^2 + ・・・ + (1+n/n)^2} Sn=1/n {(1+1/n)^2 + (1+2/n)^2 +・・・+(1+n/n)^2}とおき、  Sn=1/nΣ[n,k=1](1+k/n)^2 ここまでやり方として正しいでしょうか? また、この解法でやっていくと 与式=lim[n→∞]Sn   =lim[n→∞]1/nΣ[n,k=1](1+k/n)^2 となりf(x)が定まりますが、f(x)が何になるのか分からないです。 f(x)=(1+x)^2 でいいのでしょうか? お願いします。

  • 極限値について

    極限値について教えてください。 1、f(x)=1/xの極限値は存在しますか? 2、lim ax^2+bx/x-3 =12 が成り立つとき、a、bの値を求めよ。   x→3  という問題において、どうして「x→3のとき、分母が0に近づくから  極限値が存在するには分子も0に近づかなければいけない」  のでしょうか?   

  • 極限値を求める問題です

    よろしくお願いします。 以下の問題を解いていたのですが、いまいち自信がありません。 また、(3)の問題の解き方がどうしてもわかりません。 わかる方、ご指導のほど、よろしくお願いします。 【問題】 ()内の関数の定積分と関連されることにより、次の極限値を求めよ、 (1) lim[n→∞] {(1/(n+1) + 1/(n+2) + … + 1/(n+n)} これを適用する→(1/1+x) 自分の答え =lim[n→∞] (1/n){(1/(1+1/n) + 1/(1+2/n) + … + 1/(1+n/n)} f(x)=1/(1+x), 1/n=hとおくと、 lim [n→0] h(f(h)+f(2h)+…+f(nh)) ∫[0→1] 1/(1+x) dx = [log(x+1)](0→1) =log(2)-log(1)=log(2/1)=log(2) (2) lim[n→∞] {(n/n^2 + n/(n^2+1^2)+…+n/(n^2+(n-1)^2)} これを適用する→(1/(1+x^2)) 自分の答え 各項を、n/(n^2+k^2)=1/(1+(k/n)^2)*1/n (k=0,1,…,(n-1))と表す。 次に、n→∞の極限に移行して、 lim [n→∞] Σ 1/(1+(k/n)^2)*1/n =∫[0→1] 1/(1+x^2) dx = [arctan(x)](0→1) =[arctan(1)]-[arctan(0)]=π/4-0=π/4 (3) lim[n→∞] 1/(n^(a+1)) Σ[k=1→n] k^a これを適用する→(x^a (a>0)) 自分の答え ??? 以上、ご指導のほど、よろしくお願いします。

その他の回答 (1)

  • 回答No.2

1.h→∞であるとf(a+2h)→f(∞)であるのでこれがどうなるかがわからないと極限がわかりません.おそらくh→0の間違いではないかと思います.そうであるとして回答します. 2h=kとおくと {f(a+2h)-f(a)}/h={f(a+k)-f(a)}/(k/2) =2{f(a+k)-f(a)}/k h→0⇔k→0であるから極限値は lim_{k→0}2{f(a+k)-f(a)}/k =2lim_{k→0}{f(a+k)-f(a)}/k =2f'(a) 2.x-a=hとおくと, {x^2f(a)-a^2f(x)}/(x-a) ={(a+h)^2f(a)-a^2f(a+h)}/h ={(a^2+2ah+h^2)f(a)-a^2f(a+h)}/h ={-a^2{f(a+h)-f(a)}+h(2af(a)+hf(a))}/h =-a^2{f(a+h)-f(a)}/h+2af(a)+hf(a) x→a⇔h→0であるから極限値は lim_{h→0}[-a^2{f(a+h)-f(a)}/h+2af(a)+hf(a)] =-a^2f'(a)+2af(a)

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 極限値を求めたいのですが、教えてください

    次のような極限値を求める問題ですが、次の数列の収束・発散を調べ、収束する場合にはその極限値を求めよという問題です。   (1)lim(n→∞)  1+(-1)^n   (2)lim(n→∞)  √(n^2 +1) - √(n^2 -1)

  • 不定形の極限値

    不定形の極限値の範囲で下の2つの定理の証明がわからなくて困っています。 どなたか解説をお願いします。 定理1 f(x),g(x)はある開区間(a,∞)で微分可能な関数とする。 もし、lim(x→∞)f(x)=lim(x→∞)g(x)=0が成立し、 極限 lim(x→∞) f'(x)/g'(x) = L が存在すれば lim(x→∞) f(x)/g(x) = L が成り立つ。 定理2 f(x),g(x)はaを含むある開区間で微分可能な関数とする。 もし、lim(x→a)f(x)=lim(x→a)g(x)=∞が成立し、 極限 lim(x→a) f'(x)/g'(x) = L が存在すれば lim(x→a) f(x)/g(x) = L が成り立つ。   

  • 極限値

    こんにちは。今、極限値の勉強をしているのですが、いくつか不明な点があるので質問させて下さい。 まず、lim tan^-1*X/X の解き方の仮定を教えてください。      x→0 次に、x→+0はプラスがつく事により、問題の解き方の仮定でただの0とどう変わるんでしょうか。 最後に不定形の極限値はロピタルの定理を用いると簡単に解けますが、ただの極限値か、不定形の極限値だと簡単に見分ける方法はないでしょうか。 ご回答お願いします。

  • 極限値の問題

    lim(x→1){(x^2+ax+b)/(x-1)}=3を満たす定数a,bを求めよ という問題なんですが lim(x→1)(x-1)=0であるから lim(x→1)(x^2+ax+b)=0 解答にはこのように始まっているのですが この命題の解釈を 「xは1になるのでそれだと分母が0になってしまい、0での除法は数学的にありえないので 分子も0になるしかない」 とこんな感じに僕なりにしてみたんですがあっているでしょうか? それと 微分の問題をある程度やっていて、それなりに解けるようになってきたんですが 未だに極限値というのが微妙な理解です、テキストを読んでも難しい言葉で書かれており、何がなにやらというのが本音です。 今僕が考えている極限値というのは、3次関数のグラフを書いた時に出来る山のような曲線というちょっとわけのわからない理解なんですが 極限値とはなんなのかという簡単な解説をよろしくお願いします。

  • 極限値の性質

    極限値の性質で lim[x→a]f(x) = A, lim[x→a]g(x) = Bのとき、 lim[x→a]{f(x) + g(x)} = A + B という公式がありますが、 この式は lim[x→a]{f(x) + g(x)} = lim[x→a]f(x) + lim[x→a]g(x) であるから、 lim[x→a]{f(x) + g(x)} = A + B であるということであっていますでしょうか?

  • 極限値の問題です。次の2問が分かりません。どなたかよろしくお願いします

    極限値の問題です。次の2問が分かりません。どなたかよろしくお願いします。 問題 次の極限値を求めよ。 (1) lim[x→∞] 1/n{(1/n)^3+(2/n)^3+・・・+(n/n)^3} (2) lim[x→∞] 1/n(e^-1/n+e^-2/n+・・・+e^-n/n)

  • 極限値を求める問題

    極限値を求めろという問題で  x^2 sin a - a^2 sin x lim ----------------------- x→a    x - a というのがあり、    f(x) - f(a) lim ----------- = f'(a) を利用するらしいんですが x→a  x - a 単純にはこの形に変形ができなさそうなんですが、どう変形したらいいんでしょうか テストが明日で困っています ちなみに答えは 2a sin a - a^2 cos a です

  • 極限値 問題 lim[x→∞](1+(1/x))^

    極限値 問題 lim[x→∞](1+(1/x))^x=e lim[x→∞](1+(1/x))^x=eを使って、lim[x→∞](1+(a/x))^x=e を求めよ。 a/x=tと置換したり、(1+(a/x))=a((1/a)+(1/x))としたりしてみたのですが、 解き方がわかりません。 ご回答よろしくお願い致します。

  • 極限値を求める問題です。

    次の極限値を求めよ。 lim(x,y)→(1,1) (x-1)^3+(y-1)^3/(x-1)^2+(y-1)^2 (x-1)^3+(y-1)^3が分子で (x-1)^2+(y-1)^2が分母です。 よろしくお願いします。

  • 極限値を求める問題です。

    次の極限値を求めよ。 lim(x,y)→(1,1) (x-1)^3+(y-1)^3/(x-1)^2+(y-1)^2 (x-1)^3+(y-1)^3が分子で (x-1)^2+(y-1)^2が分母です。 よろしくお願いします。