• 締切済み
  • すぐに回答を!

運動量の期待値

別に宿題を教えてもらいたい訳ではなく、いい例題を見つけたので使わせてもらいました。 ある波動関数が与えられていて運動エネルギーの期待値を求めたい場合はどうしたらいいんですか? http://www1.doshisha.ac.jp/~bukka/Index/bukka3_4_web/pc3/pc3_04.html 例えば、ここのページの下の方に出ている演習問題の2-6、 『運動エネルギーの期待値<T>を求めよ』 というのと同じ感じです。 一般的に、<T>=∫Φ*TΦdx が成り立ちますよね。なので、 波動関数Φ*に作用素を作用させて、波動関数Φをかけて、変数xで積分するって感じで解くんですか?

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数1298
  • ありがとう数1

みんなの回答

  • 回答No.1

掲載されているサイトをよくご覧になればわかると思いますが、運動エネルギーの演算子はT=-(1/2)hbar^2/m(∂^2/∂x^2)ですね(←1次元の場合)。従って<T>=∫Φ*TΦdxで具体的に波動関数Φを入れて積分計算すればOKですね。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 運動量演算子について

    シュレディンガー方程式でハミルトニアンのうちの運動エネルギーのところがなぜ、運動量演算子を二度同じ波動関数に二階の偏微分のようにかけるのかよくわかりません。古典力学でのp^2/(2m)はわかるのですが、それがなぜ、二階の微分になるのでしょうか?どちらかと言うと波動関数に運動量演算子を掛けた結果を二乗するなどの方がしっくりくるのですが、どなたか説明していただけると助かります。

  • 水素原子の期待値の計算

    水素原子1S軌道に関して運動量pの期待値〈p^2〉を求め、最終的には運動エネルギーの期待値を得たいのですが、 水素原子の1S軌道の波動関数をΨ、その複素共役をΨ*とします。 Ψ=(1/π)^(1/2)・(1/a)^(3/2)・exp(‐r/a)です。aはボーア半径です。 このとき 〈p^2〉=∫Ψ*p^2Ψdτ     =∫(0~2π)dφ∫(0~π)sinθdθ∫r^2drΨ* p^2Ψ ここでp^2=(-(h/2π)^2)d^2/dx^2なので上の式に代入して     =∫(0~2π)dφ∫(0~π)sinθdθ∫r^2drΨ*(-(h/2π)^2)d^2/dx^2Ψ さらに Ψ=(1/π)^(1/2)・(1/a)^(3/2)・exp(‐r/a)であるので(aはボーア半径)、上の式に代入して整理すると     =(2π)×(2)×(1/π) ・(1/a^3)・(-(h/2π)^2)∫r^2・exp(‐2r/a)・(d^2/dx^2)dr xの2階微分の処理方法を含め、ここからどのように計算したらよいか分からずにいます。 最終的には水素原子1S軌道に関しての運動エネルギーの期待値を得たいのです。 しかもポテンシャルエネルギーの期待値との関係から〈K〉=-(1/2) 〈U〉= e^2/(8πεa)になるはずなのですが真空の誘電率εや電荷eが出てくる気配もなく困っています。 どうかご教示いただけないでしょうか。 そもそも計算方法が間違っているのでしょうか。 よろしくお願いいたします。

  • 量子力学の問題(期待値を求める)

    量子力学の問題について、自分で解いたのですが正しいか自信がありません。各問いで解答が正しいか、また考え方が正しいかご教授をお願いします。 問題 ポテンシャルV(x)=-gxの中を運動する質量mの粒子について。ある時刻t=t0において粒子の波動関数が次のように与えられたとする。 Ψ(x,to)=Cexp(-ax^2+ibx) (a,b,Cは正の実数) このとき、 (1)t=toにおける位置の期待値 (2)t=toにおける運動量の期待値 (3)時刻tにおける位置の期待値 (4)波動関数Ψ(x,t)が従う、時間に依存するシュレディンガー方程式 を求めよ。 解答 (1)<Ψ(x,to)*| x |Ψ(x,to)> =∫[-∞,∞]Cexp(-ax^2-ibx)・x・Cexp(-ax^2+ibx)dx =C^2∫[-∞,∞] xexp(-2ax^2)dx を計算して答えが0になりました。(この積分を直接計算できませんでしたが、被積分関数のグラフを考えると原点対象だったので、-∞から∞に積分して0になるだろうと考えました。) (2)<Ψ(x,to)*| -ihd/dx |Ψ(x,to)> =… =hbC^2∫[-∞,∞] exp(-2ax^2)dx =hbC^2×√π/√(2a) (最後の積分でガウス積分の公式を使いました。) (3)ハミルトニアンが時間に依存しないので、時刻tにおいて波動関数ψは ψ(x,t)=Ψ(x,to)exp(-iEt/h)=Cexp(-ax^2+ibx)・exp(-iEt/h) とおける。従って求める期待値は、 <ψ(x,t)*| x |ψ(x,t)> =∫[-∞,∞]Cexp(-ax^2-ibx)・exp(iEt/h)・x・Cexp(-ax^2+ibx)・exp(-iEt/h)dx =C^2∫[-∞,∞] xexp(-2ax^2)dx =0 (結局(1)と同じ) (4)(-h^2/2m(d^2/dx^2)-gx)ψ(x,t)=ihd/dtψ(x,t)

  • 量子力学の期待値の問題です

    波動関数φ(x)=C*exp(-x^2/2a^2)から不確定性関係を導く問題です。 運動量のp^2の期待値<p^2>の計算がわかりません <p^2>=∫φ(x)'*p^2*φ(x)    *φ'(x)は共役複素数 =|c|^2*(-ih) ∫(d^2/dx^2) exp(-x^2/a^2) dx =|c|^2*(-ih)*(4/a^4) ∫x^2* exp(-x^2/a^2) dx ここで |C|^2=1/a√π (規格化より求めた) ∫x^2* exp(-x^l2/a^2) dx=(a^3*√π)/2 を代入して <p^2>= -2ih    以上のようになったのですが、間違っている気がしてなりません。 間違いがあったらご指摘お願いします。

  • 波動関数が関係する期待値について

    期待値は、波動関数ψが規格化されているとすると  <f(x)>=∫dxf(x)P(x)=∫dxψ*f(x)ψ のようにあらわされると教科書に書いてありました。この場合、P(x)=ψ*ψであるようですが、そうすると  <f(x)>=∫dxf(x)ψ*ψ のようにあらわしてもよいことになります。f(x)=pつまりf(x)を運動量とするとき、運動量は演算子に置き換えることができますが、このような交換可能であるとするとどの関数に運動量演算子がかかっても結果は変わらない、ということになります。 これは明らかに違うのではないか、と思ったのですが、実際  <f(x)>=∫dxψ*f(x)ψ=∫dxf(x)ψ*ψ のようにしてもよいのでしょうか?

  • 量子力学 問題

    下の図の波動関数の期待値xとその2乗を求めたいのですがわかりません。 具体的にわからないところはエルミート多項式の2乗です。

  • 量子力学:不確定性原理

    次の波動関数 ψ(x)=exp{-x^2/2*(Δx)^2}exp{(i*p0/ħ)x} はΔxの大きさの空間的広がりを持つ(ガウス波束)。この波動関数をフーリエ変換して、運動量空間の波動関数φ(p)を求めよ。このφ(p)に対して、pの期待値<p>と広がりΔpが何になるかφ(p)の式の形をもとに求めなさい。 たぶん不確定性原理の話だと思うのですが解けません(><)なんか複素積分を使うらしいです。 よろしくお願いします。

  • 量子力学

    波動関数Ψ(x)が Ψ(x)={π^(-1/4)d^(-1/2)}exp{ikx-(x^2/2d^2)} と表される。 d,kは正の定数、プランク定数hとする。 (1)位置xについて、期待値<x>と<x^2>を求めよ (2)運動量pについて、期待値<p>と<p^2>を求めよ (3)Δx=(<x^2>-<x>^2)^(1/2),Δp=(<p^2>-<p>^2)^(1/2)とするときΔxΔpを求めよ。 全くわかりません。詳しい解説お願いします。

  • 量子力学の問題について質問です。

    量子力学の問題です。 一次元だけで考える。粒子の波動関数がAe^{(k/2)(x-c)^2} (A・k>0.cは実数の定数)であたえられている時、 (a)規格化条件からAを求めよ (b)xの期待値を求めよ (c)(x-c)^2の期待値を求めよ (d)運動量p=-ihd/dx の期待値を求めよ (e)上で求めた運動量の期待値をp₀とするとき、(p-p₀)^2の期待値を求めよ どなたかわかる方説明していただけるとありがたいです。

  • 1. 水素原子の基底状態(1s 軌道) の波動関数は,

    1. 水素原子の基底状態(1s 軌道) の波動関数は, ψ100(r, θ, ?) :=(1/√4π)・(2/{(aB)^(3/2)}・e^(-r/aB) と与えられる. ただし,(r, θ, ?) は3 次元の極座標(球座標)であり,aB はボーア半径である. 基底状態におけるr^k (k は正の整数) の期待値?r^k? を計算してください.ただし,量子力学において,「演算子O の期待値」とは(規格化された)波動関数ψ(x) を用いて, ?O? =∫d^3・x・ψ^?(x)Oψ(x) と定義される物理量である.