• ベストアンサー

(1/a^n)+(1/b^n)+(1/c^n)

(1/a^n)+(1/b^n)+(1/c^n)=(1/a)+(1/b)+(1/c)なんでしょうか?

noname#82286
noname#82286

質問者が選んだベストアンサー

  • ベストアンサー
回答No.7

(b^k+c^k)/a+(a^k+c^k)/b+(c^k+a^k)/c の部分について、 t=1/(a+b+c)^kと便宜上おく(何回も書くのが面倒くさい) (b^k+c^k)/a+(a^k+c^k)/b+(c^k+a^k)/c =a(t-a^k)+b(t-b^k)+c(t-c^k) =(a+b+c)t - {a^(k-1)+b^(k-1)+c^(k-1)} =1/(a+b+c)^(k-1) - {a^(k-1)+b^(k-1)+c^(k-1)} =0 よって 1/(a+b+c)^(k+1)={1/(a+b+c)}{1/a^k+1/b^k+1/c^k} ={(1/a)+(1/b)+(1/c)}{1/a^k+1/b^k+1/c^k} =1/a^(k+1)+1/b^(k+1)+1/c^(k+1)+(b^k+c^k)/a+(a^k+c^k)/b+(c^k+a^k)/c 1/(a+b+c)^(k+1)=1/a^(k+1)+1/b^(k+1)+1/c^(k+1) が成立。 AとBより命題が成立 あとAはn=1だけじゃだめだ、 n=1とn=2のときも証明する必要ある。 じゃないの??間違いがなければ・・・

noname#82286
質問者

お礼

ごめんなさいnは奇数でした。

noname#82286
質問者

補足

すみませんどうも頭が悪いもので >(b^k+c^k)/a+(a^k+c^k)/b+(c^k+a^k)/c の部分について、 t=1/(a+b+c)^kと便宜上おく(何回も書くのが面倒くさい) (b^k+c^k)/a+(a^k+c^k)/b+(c^k+a^k)/c =a(t-a^k)+b(t-b^k)+c(t-c^k) =(a+b+c)t - {a^(k-1)+b^(k-1)+c^(k-1)} =1/(a+b+c)^(k-1) - {a^(k-1)+b^(k-1)+c^(k-1)} =0 よって 1/(a+b+c)^(k+1)={1/(a+b+c)}{1/a^k+1/b^k+1/c^k} ={(1/a)+(1/b)+(1/c)}{1/a^k+1/b^k+1/c^k} =1/a^(k+1)+1/b^(k+1)+1/c^(k+1)+(b^k+c^k)/a+(a^k+c^k)/b+(c^k+a^k)/c 1/(a+b+c)^(k+1)=1/a^(k+1)+1/b^(k+1)+1/c^(k+1) が成立。 > とこの辺がわからないです。(って殆どだけど)

その他の回答 (14)

  • debut
  • ベストアンサー率56% (913/1604)
回答No.4

(1/a)+(1/b)+(1/c)=1/(a+b+c) を因数分解すると、 (a+b)(b+c)(c+a)=0となるので、nが偶数のときと奇数 のときでは違うんじゃ?

回答No.3

??言っている意味がよくわからない つまり (1/a)+(1/b)+(1/c)=1/(a+b+c)ならば (1/a^n)+(1/b^n)+(1/c^n)=(1/(a+b+c)^n) ガ成立するか?って聞いているんですか?

noname#82286
質問者

補足

そうです。

回答No.2

だからそれもちがうんじゃないの 具体的な数字でやってみれば n=1でもちがくない?? a=1 b=2 c=3 (1/a^n)+(1/b^n)+(1/c^n)=(1/(a+b+c)^n) 左辺=11/6 右辺=1/6 で違うんじゃないの

noname#82286
質問者

補足

すみませんNO1の回答に書いておきました。

回答No.1

ちがうんじゃないの n=1ならそうだけど n=2で、たとえばa=1 b=2 c=3とかで具体的に計算すると 左辺=49/36 右辺=11/6 だからちがうんじゃない

noname#82286
質問者

お礼

ごめんなさいまたまた訂正します (1/a^n)+(1/b^n)+(1/c^n)=(1/(a+b+c)^n)は (1/a)+(1/b)+(1/c)=1/(a+b+c)が満たされている時です

noname#82286
質問者

補足

ごめんなさい間違いました訂正します。 (1/a^n)+(1/b^n)+(1/c^n)=(1/(a+b+c)^n)でした

関連するQ&A

  • F_n=(a+b+c)^(2n+1)-{a^(2n+1)+b^(2n+1)+c^(2n+1)} の因数分解

    F_n=(a+b+c)^(2n+1)-{a^(2n+1)+b^(2n+1)+c^(2n+1)}  (n=1,2,3,4,5) を因数分解せよ、という問題なのですが、どすればよいのでしょうか? なお、答えは、 F_1=3(b+c)(c+a)(a+b) F_2=5(b+c)(c+a)(a+b)(Σa^2+Σab) F_3=7(b+c)(c+a)(a+b)(Σa^4+2Σa^3 b+3Σa^2 b^2+5Σa^2 bc) F_4=3(b+c)(c+a)(a+b)(3Σa^6+9Σa^5 b+19Σa^4 b^2+35Σa^4 bc+23Σa^3 b^3+63Σa^3 b^2 c) F_5=11(b+c)(c+a)(a+b)(Σa^8+4Σa^7 b+11Σa^6 b^2+21Σa^6 bc+9Σa^5 b^3+54Σa^5 b^2 c+23Σa^4 b^4+84Σa^4 b^3 c+123Σa^4 b^2 c^2+159Σa^3 b^3 c^2) のようなのですが、(b+c)(c+a)(a+b)を因数に持つことは分かりますが、残りの因数はどうやってもとめるのでしょうか? 一文字を変数と見て、地道に割り算するしかないのでしょうか? 効率的な計算方法はありますでしょうか?

  • {a+b+c}^3-{a^3+b^3+c^3}

    {a+b+c}^(2n+1)-{a^(2n+1)+b^(2n+1)+c^(2n+1)} (ただし、n=1,2,3,4,5) を因数分解するにはどうしたらよいのでしょうか。

  • にゃんこ先生の自作問題、Σ[a≠b,b≠c,c≠a, a,b,c∈{1,2,3,…,n}]abc

    にゃんこ先生といいます。 a,b,c∈{1,2,3,…,n} とします。 Σ[a≠b]ab ={Σ[k=1~n]k}^2 - Σ[k=1~n]k^2 ={n(n+1)/2}^2 - n(n+1)(2n+1)/6 =n(n+1)(3n^2-n-2)/12 Σ[a<b]ab =(1/2)Σ[a≠b]ab =n(n+1)(3n^2-n-2)/24 Σ[a≦b]ab =Σ[a<b]ab + Σ[a=b]ab =n(n+1)(3n^2-n-2)/24 + n(n+1)(2n+1)/6 =n(n+1)(3n^2+7n+2)/24 ですが、 Σ[a≠b,b≠c,c≠a]abc や Σ[a<b<c]abc や Σ[a≦b≦c]abc また、それらをm変数に拡張したものはどういった公式ににゃるのでしょうか? にゃにかうまい考えがある気がするのですが、思いつきません。

  • a^(b^(c^(・・・)))

    正数列(a_n)が与えられていて1に収束するとします。 各nについて c(n,n)=a_n c(n,k)=(a_k)^c(n,k+1)(1≦k≦n-1) によって定まるc(n,1),・・・,c(n,n)を用い、 b_n=c(n,1)によって数列(b_n)を定めるとします。 (b_n)が収束しない(a_n)の例はありますか?

  • n,a,b,c,dは0または正の整数、

    n,a,b,c,dは0または正の整数、 a^2+b^2+c^2+d^2=n^2-6 a+b+c+d<=n a=>b=>c=>d のとき、これを満たす(n,a,b,c,d)の組をすべて求めよ。 最初にnの値を決めないことには、a,b,c,dも考えられないのでないかと思い nだけの不等式を考えようとしましたが、不等号の向きでうまく押さえられません。 よろしくお願いします。

  • (C[a,b] , || ||_∞)

    {φn}をC[a,b] のCauchy点列とする。  t∈[a,b]に対して αt = lim[n→∞] αn(t) とする。  [a,b]上の関数φをφ(t)=αtと定義すれば  α∈C[a,b]になることの証明と ||φnーφ||_∞ →0 を示す。 という問題なのですが、本などを調べながら考えた結果、 ∀ε>0、∃N, n≧N ⇒ max[a≦t≦b]|φm(t)-φn(t)|<ε と φn(t) → αt=φ(t) (n→∞) から ∀ε>0、∃N, n≧N ⇒ max[a≦t≦b]|φn(t)-φ(t)|<ε を言えばいいのでしょうか。  無限に行くって所は消えていいんでしょうか? あとは、上記のことがいえれば、 →0 はいえる気がするのですが・・・

  • A,B,C⊂R^n,A≠φ,C:閉集合かつ凸集合とする時,A+B⊂A+C⇒B⊂C

    [問]A,B,C⊂R^n,A≠φ,C:閉集合かつ凸集合とする時、 A+B⊂A+C⇒B⊂C を示せ。 [証] 先ず C:閉集合かつ凸集合 から ∀x∈C,0<∀ε∈R,近傍Uε(x)⊂R^n\C 且つ ∀x,y∈C,λx+(1-λ)y∈C(λ∈[0,1]) 且つ ∀a+b∈A+Bならばa+b∈A+C がいえますよね。 そこで ∀b∈Bに対してb∈Cをどうやって示せるのでしょうか?

  • a,b,cはa^2-3b^2=c^2を満たす整数とするとき、次のことを

    a,b,cはa^2-3b^2=c^2を満たす整数とするとき、次のことを証明せよ。 1、a,bの少なくとも一方は偶数である。 2、a,bが共に偶数なら、少なくとも一方は4の倍数である。 3、aが奇数ならbは4の倍数である。 という問題です。 1はa,bを奇数として、2m+1,2n+1とおいて計算したのですが、いまいちどう証明したらよいのか分かりません。 2はどちらも2m,2nとして計算したら、4(m^2-3n^2)=c^2となったのですが、これで何の証明になるのか…。 3もよく分かりません。 勉強不足で申し訳ありません。考え方だけでも教えてください。よろしくお願いします。

  • 数学A (a+b+c)^nの展開式について。

    数学A (a+b+c)^nの展開式について。 (a+b+c)^nの展開式の一般項が画像のようになる理由を 詳しく教えてください。よろしくおねがいします。

  • a(b2-c2)+b(c2-a2)+c(a2-b2

    a(b2-c2)+b(c2-a2)+c(a2-b2)の答えについて、教えてください。 式は a(b2-c2)+b(c2-a2)+c(a2-b2) = ab2-ac2+bc2-ba2+ca2-cb2 = (-b+c)a2+(b2-c2)a+(bc2-cb2) = (-b+c)a2+(b+c)(b-c)a+bc(-b+c) = -{(b-c)a2-(b+c)(b-c)a-bc(b-c)} = -(b-c){a2-(b+c)a-bc} = -(b-c)(a-b)(a-c) = (a-b)(b-c)(c-a) 質問1 式は合ってますか? 質問2 答えは(a-b)(b-c)(c-a)で合ってますか? 質問3 -(b-c)(a-b)(a-c)で      マイナスは (a-c) にかけて、 (c-a) にし      (a-b)(b-c)(c-a) にするとみたのですが、      どうして、マイナスを (a-c) にかけるにかが、解りません。      計算をすべて解いて、それにマイナスをかけなくてもいいんですか?