力学の問題
物理の力学の問題について教えて下さい。自分は力学が苦手で解き方がイマイチ分からず、かなり苦戦してます。助けて下さい。
水平でなめらかな床と,床に垂直で互いに平行な2つの壁がある。この床の上で,大きさの無視できる小球1と小球2の運動を考える。図は床と壁に垂直な断面を表し,2つの小球はこの断面内で運動するものとする。2つの壁の間の距離L,小球1と2の質量をそれぞれm,2mとする。はじめ,小球2は左の壁から距離aの位置で静止しており,小球1は左から小球2に向かって速度v>0で等速度運動していた。その後,小球1と2は衝突をくり返した。小球1と2の間,小球と壁の間の反発係数(はね返り係数)は1とする。
(1)小球1と2が1度目の衝突をした直後の速度をそれぞれv1,v2とする。運動量保存の法則よりv1,v2,vの間には□□の関係が成り立つ。また,2つの小球の間の反発係数が1であるから,v1,v2,vの間には□□の関係がある。これらをv1,v2について解くとv1=□□,v2=□□と求められる。
(2)小球どうしが1度目の衝突をした後,2つの小球はともに壁ではね返って左の壁から距離bの位置で2度目の衝突をした。bはa,Lを用いて□□と表される。小球どうしが2度目の衝突をさた直後,小球1と2の速度はそれぞれ□□,□□である。
(3)このとき,a=bであれば,小球どうしの3度目の衝突は1度目の衝突と同じ位置,同じ速度で起こり,2つの小球は周期的な運動を行う。その周期はL,vを用いて□□と表される。a≠bであっても,2つの小球は周期的な運動を行う。この場合,2つの小球は小球どうしの□□度目の衝突で初めて1度目と同じ位置,同じ速度で衝突する。よって,周期はL,vを用いて□□と表される。
PS
力学の文が長くて、どの数字が必要なのか分かりません。コツが有れば教えて下さい。
お礼
分かれる割合をxとして、xだけ分かれたほうをQ(2)、(1-x)だけ分かれたほうをQ(3)とすると xA(1)V(1)=A(2)V(2) (1-e)A(1)V(1)=A(3)V(3) この二式を足して A(1)V(1)=A(2)V(2)+A(3)V(3) となりました。 次にやはりベルヌーイの式を上記と同じように立てると それぞれV(1)=V(2)、V(1)=V(3)となりました。 以上よりV(1)=V(2)=V(3)となりますが、 これであっているのでしょうか? ただし圧力を一定とした場合ですが、、