• 締切済み

偏微分をしたいんですが…

s_nakの回答

  • s_nak
  • ベストアンサー率55% (269/487)
回答No.1

偏微分の記号には∂を使います。合成関数の微分法則(連鎖律)は使えません。 ご質問の場合の「xについて偏微分する」とは、yを定数と見なして微分するということです。

参考URL:
http://ja.wikipedia.org/wiki/偏微分

関連するQ&A

  • 偏微分の問題です

    偏微分の問題です 数学の中間試験の過去問で疑問にぶち当たりました。 u=x+y v=x-2y のとき、du/dx dx/du を求めなさいという問題なのですが、(dは全てラウンドディーです)答えではそれぞれ1と2/3となっています。1つ目の式のyを定数とみてdu/dxが1というのは分かります。また、yに二つ目の式を代入し、変形してから偏微分すると、2/3に確かになります。しかし、一つ目の式をx=u-yと変形してdx/du=1ではダメなのでしょうか。 このように、2つ式が与えられたときに、dx/duまたは、du/dxが何を定数とみなして偏微分するかによって値が異なってしまうとおもいます。上の場合では、xをuとvの式であらわしてvを定数とみなして偏微分する場合と、xをuとyの式であらわしてyを定数とみなして偏微分する場合とでは答えが変わります。 どうしたらいいのか見当もつきません。どうか皆様ご教授ください。 以下問題を添付します。

  • 微分方程式の同次形

    微分方程式の同次形って (y/x)の形をつくって、そこから y/x=u とおいて計算してくじゃないですか。 その後に、dy/dx=u+x(du/dx) となるのはなぜなのでしょうか? dy/dx=uとなるなら納得するんですが、その後に加わっているx(du/dx)はどういった考え方をすれば出てくるのでしょうか? dy/dx=u+x(du/dx)から考えてみても、y=uxにならないんですよね。 考え方を教えてください。

  • 同次形微分方程式

    下の“微分方程式を解け”という問題がわかりません。 (1) (x+y)+(x-y)(dy/dx)=0 (2) xy(dy/dx)=x^2+y^2 この2つなんですが、一応、同次形微分方程式の範囲なので y/xの形にしてみたんですが・・・ (1) (x-y)(dy/dx)=-(x+y) (dy/dx)=-(x+y)/(x-y) 右辺の分母分子をxで割る (dy/dx)=-(1+y/x)/(1-y/x) y/x=uとおくとy=xuよって(dy/dx)=u+x(du/dx) よって u+x(du/dx)=-(1+u)/(1-u) x(du/dx)=-(1+u)/(1-u) -u x(du/dx)=-(1+u^2)/(1-u) (1-u)du/(1+u^2)=(1/x)dx 両辺を積分というとこの左辺のせきぶんがわかりません。 というかここまでまちがってるかもしれません。 (2) (dy/dx)xy=x^2+y^2 両辺をx^2でわる。 (dy/dx)(y/x)=1+(y/x)^2 y/x=uとおくとy=xuよって(dy/dx)=u+x(du/dx)よって u+x(du/dx)=(1+u^2)/u x(du/dx)=(1+u^2)/u -u x(du/dx)=(1/u) udu=(1/x)dx  両辺を積分 (1/2)u^2=logx+C よって(1/2)(y/x)^2=logx+C y^2=2x^2(logx+C) となり、とりあえず答えは合いました。過程はあってますか? あと、最終的な答えの形なんですがy=で答えるとかx=で答えるとか ってありますか?

  • 微分方程式 1階線形

    y’-2y/x = xy^3 は y’/y^3-2/x*1/y^2と変形できる。 ここで、1/y^2 = uとおくと、この微分方程式はx、uに関する1階線形になることを示せ。 次にそれを解くことにより、この微分方程式の一般解を求めよ。 という問題なのですが一応解いてみたのですが合っているのかいまいち分かりません。 間違っている箇所があれば教えてください。 よろしくお願いします。 ↓ y’/y^3-2/x・1/y^2=x 1/y^2=uとおくと、 du/dx=du/dy・dy/dx du/dx=(-2/y^3)・y’ du/dx=-2y’/y^3 となりますから、 y’/y^3=-1/2 du/dx よって、元式に代入すると、 -1/2 du/dx-2/x u=x …(1) 定数変化法を用いる。斉次形の解をまず求める -1/2 du/dx-2/x u=0 du/dx=-4u/x ∫du/u=-4∫dx/x ln|u|=-4ln|x|+C1 u=±e^(-4ln|x|+C1) u=Cx^(-4) Cがxの関数であったものとして、非斉次形の解を求める。 C=p(pはxの関数)とおくと、 du/dx=p’x^(-4)-4px^(-5) ですから、(1)にそれぞれ代入して、 -1/2 {p’x^(-4)-4px^(-5)}-2/x px^(-4)=x -1/2 p’x^(-4)+2px^(-5)-2px^(-5)=x -1/2 dp/dx=x^5 ∫dp=-2∫x^5 dx p=-1/3 x^6+C 従って、 u=(-1/3 x^6+C)x^(-4) u=-1/3 x^2+Cx^(-4) となるから、1/y^2=uより、 1/y^2=-1/3 x^2+Cx^(-4)

  • 微分 やり方を見せてほしいです

    y=-3ln(1-x)^2 を微分せよという問題です。 私のやり方 (1-x)を u とする y=-3lnu^2 u^2 をzとする y=-3lnz dy/dx = (dy/dz)(dz/du)(du/dx) =(-3/z)(2u)(-1) =6/u =6/(1-x) となります。 答えはこれで合っているのですが無駄なやり方をしてる様に思います。 普通はどんなやり方をしているのでしょうか?

  • 微分方程式の問題

    dy/dx=2xy+x^3y^2 解:1/y=1/2(1-x^2)+Ce^(-x^2) の問題なのですが、 ベルヌーイの方程式のやり方で解いていった後、 du/dx=-2xu-x^3  [u=1/y du/dx=-1/y^2(dy/dx)] になり、線形微分方程式で解いていくと、 u=e^(-∫2xdx)(∫e^(∫2xdx)(-x^3)+c) となり、∫e^(∫2xdx)(-x^3)を部分積分の形で計算していくと、 解と異なる答えがでてきてしまいます。 どこが間違っているのでしょうか。

  • 微分の公式について

    すいません。 おしえてください。 u=f(x),y=g(u)がともに微分可能のとき、合成関数 y=g(f(x))=g・f(x) も微分が可能であって、次式が成り立つのに dy/dx=dydu ・  du/dx または y'=g'(u)・f'(X) の証明がわかりません。 初心者向けにおしえてください

  • 微分積分について(一階線形微分方程式)

    この問題の解き方について教えて下さい。 問、曲線y = f(x)上の任意の点P(x , y)における    接線の傾きがPのx座標とy座標の和に等しい。    このような曲線のうち原点を通るものの方程式を答えよ。   Ans. y=e^x - x -1 (自分の解いたやりかた(答えがどうしても一致しないので間違っているところを教えて下さい。)) dy / dx = x + y・・・(1) (dy / dx) - y = x 斉次微分方程式(dy / dx) - y = 0を解く y' = y 変数分離で解くと y = C e^x (Cは積分定数) Cをxの関数uと置き換えて y = u e^x y' = u' e^x + u e^x これを(1)へ代入 u' e^x = x u' = x e^(-x) ∫du = ∫e^(-x) dx これを解くと u= -x e^(-x) + e^(-x) - C y=ue^x=-x + 1 - Ce^x 条件より C=1 ∴y= 1 - e^x + 1

  • 微分方程式

    微分可能な関数f(x)が, ∫[0~x]f(t)dt=x^3-3x^2+x+∫[0~x]tf(x-t)dt をみたしている. このとき, f(x)を求めよ. 与式の左辺をF(x), 右辺をG(x)とおくと, F(x)=G(x) ⇔ F'(x)=G'(x) かつ F(a)=G(a)となるような定数aが存在するー(※) F(0)=G(0)=0より, (※) ⇔ F'(x)=G'(x) h'(x)=f(x), g"(x)=f(x)とすると ∫[0~x]tf(x-t)dt=[-tf(x-t)][0~x]+∫[0~x]F(x-t)dt=-xF(0)-g(0)+g(x) より,与式の両辺をxで微分すると, f(x)=3x^2-6x+1+F(x)-F(0)=3x^2-6x+1+∫[0~x]f(t)dtー(1) 再びxで微分して, f'(x)=6x-6+f(x) f(x)=yとおくと, dy/dx=6x-6+y 6x+y=uとおくと, dy/dx=du/dx-6より, du/dx=u u≠0のとき,  du/u=dx ⇔∫du/u=∫dx ⇔log|u|=x+c (c:積分定数) ⇔u=±e^(x+c) ⇔y=±e^(x+c)-6x (1)にx=0を代入して,f(0)=1 ⇔ ±e^c=1 ⇔ c=0 ∴y=±e^x-6x また, u=0のとき, y=-6xより,(1)に代入すると, -6x=3x^2-6x+1-3x^2 ⇔ 0=1となり, いかなるxについてもこれは成り立たず不適. ∴f(x)=±e^x-6x 添削お願いします.

  • 一階常微分方程式の本の答えと比較

    次の微分方程式の一般解を求めよ。 y^2 + x^2 dy/dx = 2yx (y/x)^2 + dy/dx = 2 y/x dy/dx = x du/dx + u から u^2 + x du/dx + u = 2u すなわち x du/dx = -u^2 + u これを変形して 1/(u^2-u) du/dx = -1/x     ←ここから自分の答えとは異なり始めます 両辺を積分して ∫( 1/(u^2-u) ) du = -∫1/x dx ∫( 1/(u-1) - 1/u ) du = -∫1/x dx から log|(u-1)/u| = -log|x| + C これより C' = e^C (u-1)/u = C'/x u=y/x を代入すると (y-x)/y = C'/x 更に整理して y = x^2/(x-C') と、本の答えには書いてあります。 自分の答えは x du/dx = -u^2 + u これを変形して 1/(u-u^2) du/dx = 1/x     ←ここから本の答えとは異なり始めます 両辺を積分して ∫( 1/(u-u^2) ) du = -∫1/x dx ∫( 1/u - 1/(1-u) ) du = ∫1/x dx から log|u/(1-u)| = log|x| + C これより C' = e^C u/(1-u) = C'x u=y/x を代入すると y/(x-y) = C'x 更に整理して y = C'x(x-y) y = C'x^2-C'xy 1 = C'x^2/y-C'x 1 + C'x = C'x^2/y (1 + C'x)/C'x^2 = 1/y y = C'x^2/(1 + C'x) になりました。 本の答えとは等価ではないようです。 でも、両辺の符号を変えなかっただけなので、自分の計算方法でも正しい答えが得られると思っています。どこから間違ってしまったのか教えてください。どうかお願いします。