• 締切済み

微分の公式について

すいません。 おしえてください。 u=f(x),y=g(u)がともに微分可能のとき、合成関数 y=g(f(x))=g・f(x) も微分が可能であって、次式が成り立つのに dy/dx=dydu ・  du/dx または y'=g'(u)・f'(X) の証明がわかりません。 初心者向けにおしえてください

みんなの回答

回答No.2

#1fushigichanです。お返事ありがとうございます。 >大学の解き方だとどのようにとくのですか? ちょっと高校レベルを超えているかな、と思うのですが、 実はこの証明には、欠陥があるのです。 Δy/Δx=(Δy/Δu)*(Δu/Δx) を考えるからには、当然Δx≠0,Δu≠0が必要です。 ところで、dy/dxとは、Δy/Δxにおいて、Δx→0としたときの極限値として 定義されますから、Δxは、むろん0ではないはずです。 しかし、Δu≠0であるという保証はないのです。 実際、xの値によっては、Δxが十分小さいとき、 f(x+Δx)と、f(x)は等しいこともありうるが、このとき Δu=f(x+Δx)-f(x) は、0になります。 そこで、証明を改良します。 Δu=0のとき、Δy=0ですが、y=g(u)は、微分可能であるから、連続です。 したがって、 Δu→0のとき、g(u+Δu)→g(u) ゆえに、 Δu→0のとき、Δy→0 ここで、uとΔuとの関数を、 Δu=0のとき、k=0 Δu≠0のとき、k=(Δy/Δu)-(dy/du) と、定義しましょう。 すると、Δuが0かどうかにかかわらず、 Δy=(dy/du)*Δu+kΔu・・・(★) が成立します。 さて、y=f(x)は微分可能であるから、もちろん連続です。 したがって、Δx→0のとき、Δu→0 Δx→0のとき、limΔu=0        Δx→0 ですから、k=0 (★)の両辺を、Δx≠0で割ると、 Δy/Δx=(dy/du)*(Δu/Δx)+k(Δu/Δx) となるので、ここでΔx→0とすれば、 dy/dx=(dy/du)*(du/dx)+0*du/dx すなわち、 dy/dx=(dy/du)*(du/dx) となります。 無茶苦茶ややこしいですね。私も高校3年のときに これを読んで理解できませんでした。 これについては、あまり深く考えないでもいいですよ。 #1の回答だけご理解いただければ、充分だと思います。 頑張ってくださいね!!

回答No.1

pami97さん、こんにちは。 >u=f(x),y=g(u)がともに微分可能のとき、合成関数 y=g(f(x))=g・f(x) も微分が可能であって、次式が成り立つ dy/dx=dy/du*du/dx を証明したいと思います。 u=f(x),y=g(u)は、それぞれ微分可能であるから、 xの増分Δxに対するu,yの増分を、それぞれΔu,Δyとします。 このとき、 Δu=f(x+Δx)-f(x) Δy=g(u+Δu)-g(u) と、おけば、 limΔu/Δx=du/dx Δx→0 limΔy/Δu=dy/du Δu→0 Δy/Δx=(Δy/Δu)*(Δu/Δx)ですから、 limΔy/Δx=limΔy/Δu*limΔu/Δx Δx→0  Δu→0   Δx→0 ゆえに、 dy/dx=(dy/du)*(du/dx) これは、すなわち y'=g'(u)*f'(x) であることになります。 高校の数学では、この証明でよいと思います。 頑張ってください。

pami97
質問者

お礼

ありがとうございます。 すごく気になったのですが、大学の解き方だとどのようにとくのですか? できれば、おしえてください

関連するQ&A

  • 合成関数の微分公式について

    すいません。 なんども。 もうひとつおねがいします。 困っています。 u=f(x),y=g(u)がともに微分可能のとき, 合成関数も微分可能であり、土の式が成り立ちます。 y=g{f(x)}=g・f(x) dy/dx=dy/du・du/dx または y'=g'(u)・f'(x) これを、証明するには、 du/dx= lim f(x+h)-f(x)/h , h→0 dy/du= lim g(u+k)-g(u)/h h→0 ここで、k=f(x+h)-f(x)とおくと、kキ0のとき dy/dx=[g(f(x))]'   =lim g(f(x+h))-g(f(x))/h まではわかるのですが、 =lim g{f(x+h)}-g{f(x)}/{f(x+h)-f(x)}  ・{f(x+h)-f(x)}/h はどのうに現れるのでしょうか? できれば、途中計算がほしいです。 お願いします

  • 合成関数の微分法により,d/dx * y^2 =

    合成関数の微分法により,d/dx * y^2 = d/dy * y^2 * dy/dxと書いてあったのですが、何故こうなるかが分かりません 関数 y = f(g(x)) を y = f(t) と u = g(x) の合成関数と考えるとき, dy/dx = dy/du * du/dx が合成関数の説明ですが、ここの説明のyとuは、上の式(d/dx * y^2 = d/dy * y^2 * dy/dx)では何になっていますか?

  • 関数の導関数を求める方法(合成関数の微分を用いる方法)

    次の関数の導関数を求める問題なのですが、 以下の解き方であってるでしょうか? (1) f(x) = (2x+1)^3 f(x)=u^3, u=2x+1とおき、合成関数の微分を用いる。 公式 (dy/dx)=(dy/du)・(du/dx)より、 f'(x)=(dy/du)=3u^2 (du/dx)=2 ∴(dy/dx) = (dy/du)・(du/dx) = 3u^2・2 = 6u^2 = 5(2x+1)^2 (2) g(x)=1/(x^2+x+1) f(x)=u^(-1), u=x^2+x+1とおき、合成関数の微分を用いる。 公式 (dy/dx)=(dy/du)・(du/dx)より、 g'(x)=(dy/du)=u^(-1) (du/dx)=2x+1 ∴(dy/dx) = (dy/du)・(du/dx) = u^(-1)・(2x+1) = (x^2+x+1)^(-1)・(2x+1) = (2x+1)/(x^2+x+1)

  • 数(3)の微分についてです。

    媒介変数で表された関数の微分法についてなのですが、教科書に下のような説明が書いてあります。 x=f(t),y=g(t)と表され、x,yがtについて微分可能のとき 合成関数の微分法により dy/dx=dy/dt*dt/dx ・・・(1) したがって dy/dx=dy/dt*1/dx/dy=dy/dt/dx/dt=g`(t)/f`(t) (1)の合成関数の微分っていうのはyがtで微分できて、tがxで微分できるときに使えるんですよね?てことはyがtの関数で、tはxの関数で無ければならないと思うのですが、最初に与えられているのはyはtの関数、xはtの関数ってことだけで、tはxの関数であるとは限らないと思うのです。なので上の証明はx=f(t)の逆関数が存在する時しか成り立たないのではないのでしょうか?何故いつも成り立つのかがわかりません。 初歩的な質問ですみませんm(__)m

  • 全微分に関して教えてください。

    全微分に関して教えてください。 教科書には、 まず、1階微分方程式:dy/dx=-p(x,y)/q(x,y)が定義され、 p(x,y)dx+q(x,y)dy=0・・・(1) と変形した形が書かれています。 そして、完全形の条件が書かれています。 そこで、(1)が完全形であるための必要十分条件は、 ∂p(x,y)/∂y=∂q(x,y)/∂xと書かれ、 証明が始まるのですが、 [必要条件] pdx+qdyが関数uの全微分であるならば、du=∂u/∂x dx+∂u/∂y dy=pdx+qdy よって、p=∂u/∂x、q=∂u/∂yであり、 ∂p/∂y=∂^2u/∂y∂x=∂^2u∂x∂y=∂q/∂x [十分条件] ∂p/∂y=∂q/∂xとしたとき、 F(x,y)=∫p(x,y)dx・・・(2)とおくと、 p(x,y)=∂F/∂x, ∂q/∂x=∂p/∂y=∂^2F/∂x∂y・・・(3) であるから、∂/∂x(q-∂F/∂y)=0・・・(4) すなわち、q-∂F/∂y・・・(5) はyだけの関数である。 q-∂F/∂y=G(y)・・・(6) よって、 u(x,y)≡∫q(x,y)dy=F(x,y)+∫G(y)dx・・・(7) とおけば、 ∂u/∂y=q(x,y)、∂u/∂x=∂F/∂x=p(x,y) であるから、 du=∂u/∂x dx+∂u/∂y dy=p(x,y)dx+q(x,y)dy・・・(8) となり、証明終了となっております。 必要条件に関しては分かるのですが、 十分条件に関しての証明がよく分かりません。 I、(2)とおく理由 II、(4)となる理由 III、(5)がyだけの関数という意味 IV、その結果、(7)となった過程 上記のI~IVに関して教えていただけませんでしょうか 長々と申し訳ありません。 どうしても理解したいので、 どなたか、教えていただけませんか。 宜しくお願いいたします。 ※数式に関しては、何度か確認したのですが、 間違っていたらご指摘ください。

  • 三角関数の微分

    IIICをやってて少し気になったので 質問させてください “y=sin(3x) と表されるとき(dy/dx)を求めよ” という問題で私は2つの解答例が思い浮かびました [解答例1] u=3xと置くと (dy/du)=3 (du/dx)=u*cos(u) となり、合成関数の微分法の公式から (dy/dx)=(dy/du)*(du/dx) =(3)*{u*cos(u)} =3*3x*cos(3x) =9x*cos(3x) (答) [解答例2] 3倍角の公式から sin(3x) =3sin(x)-4{sin(x)}^3 よって (dy/dx) =[3sin(x)]'-[4{sin(x)}^3]' =3cos(x)-12[{sin(x)}^2]*[cos(x)] (答) となってしまい、同じ式を微分したのに 異なる解答が出てきます。 この場合どちらが正しいのでしょうか。 あるいはどちらも正しいのでしょうか。 回答をお願いします

  • 導関数の求め方

    y=log√(x2+1) 2は二乗の意 この式はどうやって解けばいいのでしょうか? 合成関数の微分で、 (x2+1)=uとして、 y=log√u=logu1/2 dy/dx=du/dx×dy/du dy/dx=2x×1/u1/2 dy/dx=2x/√(x2+1) としました。 しかし、 y=logu1/2 y'=log1/u1/2 にはできないような…。 どうしたらよいのでしょう? わかる方お願いします。

  • 微分方程式の同次形

    微分方程式の同次形って (y/x)の形をつくって、そこから y/x=u とおいて計算してくじゃないですか。 その後に、dy/dx=u+x(du/dx) となるのはなぜなのでしょうか? dy/dx=uとなるなら納得するんですが、その後に加わっているx(du/dx)はどういった考え方をすれば出てくるのでしょうか? dy/dx=u+x(du/dx)から考えてみても、y=uxにならないんですよね。 考え方を教えてください。

  • 合成関数の微分なんですが

    ここで前も合成関数の問題を聞いたものなんですが たびたび質問すいません;; ((x-1)(x^2+2))^4を微分する問題なんですが、 ()の中身をuとしてy=u^4、u=(x-1)(x^2+2) としてdu/dx*dy/du=4u*3x^2-2x+2 uをxに戻して 4(x-1)(x^2+2)(3x^2-2x+2) としてあっていると思ったんですが間違ってました>< どなたか間違いを指摘してください;;

  • 合成関数の微分

    z=f(x、y) u=x+y v=x-yのとき、Z[u]、Z[v]をf[x]、f[y]を用いて表せっていう問題です。 z[u]=(dz/dx)(dx/du)+(dz/dy)(dy/du) x=u+v/2 だからdx/du=1/2 y=u=v/2 だからdy/du=1/2 よってz[u]=dz/dx(1/2)+dz/dy(1/2)      =1/2f[x]+1/2f[y] あってますか??答えは一致したんですけど、dz/dxをf[x]、dz/dyをf[y]にしてもいいんでしょうか?? 間違ってたら教えてください!!!