• ベストアンサー
  • 困ってます

波動関数の2乗 |ψ|^2 の次元

波動関数の2乗 |ψ|^2 の次元は無次元で良いのでしょうか? ある区間内に粒子の見つかる確率を表しているのは分かるのですが。 どうでしょうか?

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数635
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • metzner
  • ベストアンサー率60% (69/114)

確率が無次元です。|ψ|^2になにを掛けると確率に なりますか?それがヒントです。だから空間の次元数 によります。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 波動関数について

    量子力学に関しての質問なのですが、「量子力学の波動関数はどのように解釈されるか」という質問が大学の講義で出たのですが、「波動関数は粒子の存在確率を表す確率波」という解答であっているでしょうか。よろしければ教えてくださいm(_ _)m

  • 波動関数と複素数

    量子力学初心者です。 いろいろ本を読んでみたのですが、波動関数を複素数で表すのは単に便利であるとか、オイラーの式とか、二乗すれば確率となる…など数学的には分かりますが、波動関数を複素数で表す直感的で本質的な理由はあるのでしょうか? また、電子などが粒子性と波動性を持つことと、波動関数が複素数であることは関係しているのでしょうか? 最後に電気・電子回路でも複素数を用いますが、単に便利さのためでしょうか? よろしくお願い致します。

  • 波動関数の二乗は確率か確率密度か

    参考書などに「波動関数の二乗は粒子の存在確率を表す」とよく書いてありますが、波動関数の二乗は確率ではなく確率密度を表すと思うのですが、実際はどっちなのでしょうか? 波動関数の二乗の確率は、|Φ|^2dxだと思います。なぜなら、規格化条件(∫|Φ|^2dx=1)は確率を全領域で足し合わせるから1になるのですから、|Φ|^2dxが確率ということになりますよね・・・? わかる方いたら教えてください(><)

  • 波動関数の絶対値の2乗について

    波動関数の絶対値の2乗は確率密度と習ったのですが、ピンときません、なぜ、波動関数の絶対値の2乗は確率密度といえるのでしょうか? 回答よろしくお願いします。

  • 波動関数を求めてください。

    F(k)が図の写真のように波数k。を中心とする幅2/ρの区間だけで√ρ/2という値をもちます。ポテンシャルのない一次元軸上を運動する自由な電子を考え、波動関数Φ(x)=e^ikxという単一の波数であらわされるとします。 この波動関数Φ(x)をフーリエ変換を使って求めたいのですが、その際のF(k)はどのように表せばよいのでしょうか?? どなたか回答お願いします。

  • 摂動論を用いた波動関数

    電荷eを持つ一次元の粒子について Ho=p^2/2μ+μ^2x^2/2のハミルトニアンを考えます。電場によるポテンシャルはH1=eV=eεzです。 これの基底状態のエネルギーと波動関数を摂動論を用いて一次まで求めるのですが、エネルギーはなんとか求めることができました。さて波動関数についてですが、参考書をみると係数の求め方は乗っているのですが、係数がかかる波動関数の求め方がわからず困っています。ぜひ教えてください> <よろしくお願いします。

  • 波動関数の状態ベクトルについて

    波動関数は|ψ>だと理解していたのですが,ある教科書で波動関数ψ(r,t)は ψ(r,t)=<r|ψ) とされていました. 波動関数|ψ>は,無限個の波動関数の重ねあわせだと思うのですが(←正しいでしょうか?), なぜ位置rとの内積が波動関数となるのがよくわかりません. ご教授お願いいたします.

  • シュレーディンガーの波動関数に関する問題について

    ある粒子がつぎの波動関数で表される状態にある。 ψ=(cosΧ)e^(ikx)+(sinΧ)e^(-ikx) ただし、Χはパラメーターである。この粒子を見いだしたいとき、 その直線運動量が(a)+Kh(h-cross),(b))-Kh(h-cross)である確率はいくらか。 という問題なんですがこれは ψ=Ae^(ikx)+Be^(-ikx)として、A=0,B=0とそれぞれおいて ψの2乗を求めるでいいんでしょうか? ご存知の方いたらご教授お願いします。

  • 波動関数

    電磁気の問題なのですが、質問です。 電界E(ベクトル)の波動関数が、きれいにまとまるのは変位電流が存在するからだと教えられました。 そこでなのですが、もし変位電流がなければ電界Eが満たす方程式は波動関数にはならないのでしょうか? それを式で証明するならどうなりますか? よろしければ教えてください。

  • 電子軌道と波動関数

    原子の中での電子の軌道がどのような形になっているか、電子の存在確率が高い領域の形を描き、その波動関数の振幅の正負も示せ という問題を解いています。 形は描けるのですが、 「波動関数の振幅の正負」がわかりません。 波動関数そのものについてもよくわかっていない状態です。 教えてください。 よろしくお願いいたします。