• ベストアンサー
  • すぐに回答を!

波動関数を求めてください。

F(k)が図の写真のように波数k。を中心とする幅2/ρの区間だけで√ρ/2という値をもちます。ポテンシャルのない一次元軸上を運動する自由な電子を考え、波動関数Φ(x)=e^ikxという単一の波数であらわされるとします。 この波動関数Φ(x)をフーリエ変換を使って求めたいのですが、その際のF(k)はどのように表せばよいのでしょうか?? どなたか回答お願いします。

共感・応援の気持ちを伝えよう!

  • 回答数1
  • 閲覧数175
  • ありがとう数1

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

>その際のF(k)はどのように表せばよいのでしょうか?? どのように表すって何を聞いているのかよく分からないのですが k_0-ρ/2 < k < k_0 + ρ/2の時はF(k)=√(ρ/2)で、それ以外は0 みたいな答えでOK?

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございました!!

関連するQ&A

  • 波動関数

    電子が(-L/2,L/2)にある一次元の箱に閉じ込められているときの波動関数を求めたいのですが、どのようにして求めたらいいのか教えてください。

  • 摂動論を用いた波動関数

    電荷eを持つ一次元の粒子について Ho=p^2/2μ+μ^2x^2/2のハミルトニアンを考えます。電場によるポテンシャルはH1=eV=eεzです。 これの基底状態のエネルギーと波動関数を摂動論を用いて一次まで求めるのですが、エネルギーはなんとか求めることができました。さて波動関数についてですが、参考書をみると係数の求め方は乗っているのですが、係数がかかる波動関数の求め方がわからず困っています。ぜひ教えてください> <よろしくお願いします。

  • 波数ベクトルと波動関数

    質問が続けざまですみません。 バンド理論でよく波数ベクトルkが出てきて、kが大きくなると、エネルギーEも大きくなるような図をよく見かけます。何故、波数ベクトルkが大きいとエネルギーEも大きくなるのですか?振動数ν=c/λ、λ=2π/kをE=hνに代入して、E=hck/(2π)となります。波数kが大きいと存在する波の数(エネルギー量子の数)が多くなるので、エネルギーEも大きくなるという考えで合っていますか? また自由電子などを扱っていますが、そもそも電子の何が波なんでしょうか。格子振動の章ではフォノンの振幅など振動子として扱うので波というのは分かりますが、電子の波動関数において波数ベクトルkが何を指しているかが分かりません。電子の波動関数とは電子の存在確率の大小が波のように広がっている事を表していて、その波の波数という事ですか?波動関数Ψ=exp(i k・r)が一体何を表してるのか、もしkが大きくなると電子はどうなるのか、イマイチ理解できません。 どなたかご教授してもらえないでしょうか。お願いします。

  • 調和振動子の波動関数

    調和振動子のポテンシャル中にある相互作用していない2つの電子において量子数nのエネルギー固有状態を記述する波動関数ψn(x),スピン波動関数をφ^{±}とする。 I基底状態Etot=2*E1を記述する2電子波動関数を全てもとめよ II第一励起状態Etot=E1+E2を記述する2電子波動関数を全てもとめよ 上記の問題を考えているのですが,スレーター行列式に代入するとどちらも波動関数が0になって解が求まりません。 どのようにとけば2電子波動関数を求められますか?

  • 波動関数からシュレディンガー方程式

    演習問題を解いていていきずまったのですが、 波動関数ψ(x)=Aexp(ikx)+Bexp(-ikx):k,xはベクトル がシュレディンガー方程式を満たすことを示し、そのときのエネルギー分散関数を求めたいのですが、わかりません。どなたか教えてください。

  • 二体の波動関数から電荷密度を求めるには?

    量子力学の波動関数から電荷密度を求めるには、一粒子であれば、 q・|φ(x)|^2 ですが、二体の波動関数の場合はφ(x_1,x_2)どうなのでしょうか? 考え出したらわけがわからなくなってしまい困っています。 ボソンとフェルミオンの場合で違うのか、単にスレータ行列式を 一方の粒子の座標だけで、 ∫q・|φ(x_1,x_2)|^2 dx_2 のように積分するのか、 混乱してしまい、はまってしまっております。よろしく お願いいたします。 具体的には、たとえば、調和ポテンシャルあるいは井戸型 ポテンシャルに相互作用の無い二つのフェルミオンあるいは ボソンを投げ入れたときの問題です。 平面波展開で数表示にしてフーリエ変換するのが正しい のでしょうか。

  • 波動関数と複素数

    量子力学初心者です。 いろいろ本を読んでみたのですが、波動関数を複素数で表すのは単に便利であるとか、オイラーの式とか、二乗すれば確率となる…など数学的には分かりますが、波動関数を複素数で表す直感的で本質的な理由はあるのでしょうか? また、電子などが粒子性と波動性を持つことと、波動関数が複素数であることは関係しているのでしょうか? 最後に電気・電子回路でも複素数を用いますが、単に便利さのためでしょうか? よろしくお願い致します。

  • 波動関数

    水素原子の波動関数について3s、3p、3d軌道の動径部分と角度部分を図示せよ。また、波動関数の節も図示せよ。 という課題がでたのですが分かりません。 波動関数の式はなんとか調べたのですが、動径部分、角度部分というのが何のことなのか、どんな図を書いたらいいのか分かりません。当方化学は専門外なので高校~大学教養位の前提知識での説明をお願いします。

  • シュレーディンガーの波動関数に関する問題について

    ある粒子がつぎの波動関数で表される状態にある。 ψ=(cosΧ)e^(ikx)+(sinΧ)e^(-ikx) ただし、Χはパラメーターである。この粒子を見いだしたいとき、 その直線運動量が(a)+Kh(h-cross),(b))-Kh(h-cross)である確率はいくらか。 という問題なんですがこれは ψ=Ae^(ikx)+Be^(-ikx)として、A=0,B=0とそれぞれおいて ψの2乗を求めるでいいんでしょうか? ご存知の方いたらご教授お願いします。

  • 波動関数について(1次元)

    ポテンシャルU=0で1次元のシュレディンガー方程式を解くと、 波動関数は0<x<aにおいてΨ(x)=(√2/a)sin(nπx)/aとなり、エネルギーはE=(n^2h^2)/(8ma^2)となりますが、たとえばCH3-CH3とCH3-CH2CH3は上記の同じ式になるのでしょうか? CH3-CH(CH3)CH3のように1次元でない分子の時は、どういう波動関数になるんでしょうか?