• 締切済み

関数

関数について質問です。 f(x)があるとします。これはxを変数とする関数の意味を示してるのですが、f(x)は0になるでしょうか? 例えば、 1階線形微分方程式で y'+P(x)y=Q(x)という公式があります。 このとき、P(x)やQ(x)の値が定数ということはありえるのでしょうか?? 意味不明な質問ですみません。

みんなの回答

  • tatsumi01
  • ベストアンサー率30% (976/3185)
回答No.5

No. 1, No. 3 のものです。No. 3 へのお礼での疑問について。 関数 f(x) とは、x になにかを入れれば、ある規則によって f(x) が決まるものです。この規則は、別に計算しなくても良いんです。f(x) = 0 という関数は「x が何であっても f(x) は 0 と決まる」という規則です。 関数 f(x) はタバコの自動販売機と考えても構いません。120 円入れればマイルドセブンが出て、220 円入れればラッキーストライクが出るとします。このとき、x は入れる金額で、f(x) が出て来るタバコです(実際には、同じ金額でタバコを選択するボタンを押しますが、ここでは全品種の価格が違っていて、金額によって出て来る品種が違うと思って下さい)。 このように、関数とは入力と出力の間に、ある関係が確定しているものです(確率関数では確定していませんが、混乱するので上のように考えましょう)。 f(x) = 0 という関数は、自動販売機でいえば、何円入れようと「ありがとうございました」と言うだけで何も出て来ないものです。「そんな販売機があるか!}と怒らないで下さい。そういう規則になっている機械で、お客さんもそうだと承知している機械です。 なお、 > xにどんな値をいれても 0 になるような関数 は f(x) = cos(2x) - 2cos(x)cos(x) + 1 でもそうなりますね。こうすれば、多少は x に対して計算している気分になるでしょうか。でも、これは f(x) = 0 と同じことです。

回答No.4

No.2です。 >f(x=2)=0 または f(2)=0 になるだけであり、 f(x)=0 ではありません。 f(x=1)=0 または f(1)=0 の書き間違いでした。 どうもすみません。

  • tatsumi01
  • ベストアンサー率30% (976/3185)
回答No.3

No. 1 のものですが、お礼での疑問について。 > f(x)といのは必ず変数が入っている関数なのでf(x)=0というのは > xになにかしたら代入しないと出ないなあと疑問に思いまして・・・。 関数 f(x) というのは x についての何かの式だと思っていませんか。別に式でなくてもいいんです。そこが一番の誤解ですから正しく理解して下さい。 少し難しいかも知れませんが、関数 f(x) とは「x の値を決めれば f(x) の値が決まる」という関係です。f(x) が x についての式であれば、x を代入して計算すれば値が出ますが、普通の関数はそういうものです。 f(x) = 0 (x が何であろうと) というのはどうでしょうか。x の値を何かに決めれば、f(x) の値は 0 と決まります。つまり、これも関数です。 一方、f(x) = 2x-2 で f(x) = 0 というのは、全く意味が違います。このときの f(x) = 0 は 特定の x についてしか成立しません (x = 1 のときですね)。x が特定の値のときにのみ成立する式を方程式といい、そのような x を求めることを「方程式を解く」と言います。 関数と方程式は似た表現を使いますが、意味が全く違うことを理解して下さい。

fixmania
質問者

お礼

丁寧にわかりやすくありがとうございます。 自分の頑固の頭のせいでしつこくすみません。 xの値を定めればf(x)の値がきまるということはわかりました。 確かにf(x)は変数xについての式だとおもっていたのですが f(x)=0というのは式もなにも0なので考えにくいです。 xにどんな値をいれても0になるような関数とは f(x)=0でしか表せないのでしょうか??  自分でも、なにをいってるのかわからなくなったのを回答者さんがわかるはずないですね・・・ すみません。

回答No.2

>f(x)が例えば2x-2で表される場合 つまりf(x)=2x-2ですね。 >これに1を代入すればf(x)は0になりますが 違います。 f(x=2)=0 または f(2)=0 になるだけであり、 f(x)=0 ではありません。 >こうゆうことでf(x)が0ということがありえるのでしょうか? 上記の説明より、理解されましたでしょうか? ただし、最初の関数が f(x)=2x-2 ではなく、 f(x)=0 と言うのはありえます。これはxy平面のグラフで書くと、x軸と重なったグラフになります。

fixmania
質問者

お礼

回答ありがとうございます。 f(x)=0というのはxに値を代入して0になるということではないんですね。グラフで考えるとわかりやすいです。 ありがとうございましたm(__)m

  • tatsumi01
  • ベストアンサー率30% (976/3185)
回答No.1

微分方程式の例を出されているので、質問の意図がもう一つ不明ですが。 x によらず「f(x) = 0」とか「f(x) = 178,943」などの関数があるか、という意味の質問なら、回答は「あります」。 > y'+P(x)y=Q(x)という公式があります。 一般にはこれは「公式」にはなりません。公式なら、P(x) や Q(x) が満たすべき条件がある筈です。その条件を満たす限り、定数でも成立するはずです。

fixmania
質問者

お礼

迅速な回答ありがとうございます。 f(x)が例えば2x-2で表される場合これに1を代入すればf(x)は0になりますが こうゆうことでf(x)が0ということがありえるのでしょうか? f(x)といのは必ず変数が入っている関数なのでf(x)=0というのは xになにかしたら代入しないと出ないなあと疑問に思いまして・・・。 すみません、意味不明でありうまく伝えれません・・・

関連するQ&A

  • 線形2階微分方程式と非線形2階微分方程式の違いは?

    数学用語の意味の違いがいまいちつかめません。 (1)【線形2階微分方程式】 未知数y(x)とその導関数y'(x),y''(x)についての線形の微分方程式    y''+p(x)y'+q(x)y=f(x) を 2階線形微分方程式という.最も簡単な例として d^2f(x)/dx^2=0 がある。 (2)【非線形2階微分方程式】 非線形2階微分方程式の定義がテキストには載っていなかったのですが、    y''+p(x)y'+q(x)y ノットイコール f(x) が非線形2階微分方程式ということでしょうか? (1)と(2)の違いがどこにあるのか、はっきりせずにモヤモヤしているので、 スッキリさせたいです。どなたか数学に詳しい方がいらっしゃれば、 どうかご教授下さい。よろしくお願いします。

  • 微分方程式の線形、非線形の証明

    「y' * y'' = 1  …(*) という微分方程式が線形であるか、非線形であるかを証明せよ。」 (ただし、*は掛け算、y'はxの1階微分、y''はxの2階微分であるとする。) 【自分の考察】 2階線形微分方程式の定義は、 P0(x)y'' + P1(x)y' + P2(x)y = Q(x) であるので、(*)はこの形に当てはまらず、 y' * y'' 同士の掛け算になっているので、 『非線形』だと思う。 ここまでは、予想がついたのですが、 もっと数学的に証明することはできるのかと 疑問に思いまして、質問させていただきました。 線形関数で学習した、 f(x1 + x2) =f(x1) + f(x2) f(ax) = af(x) などを、使うのかと思ったのですが、 よくわかりません。 簡単そうに見えるのに、 まだ先が見えてこないので、 どなたかご教授いただければと思います。 よろしくお願いします。

  • 関数方程式 未知関数 No.2

    関数方程式における未知関数が何なのか 良くわかりません。 前回の質問で、微分方程式でない関数方程式に ついて教えて頂きました。 前回の質問:http://okwave.jp/qa/q8158572.html 例として、 すべての指数関数は f(x + y) = f(x)f(y) を満たす。 すべての対数関数は f(xy) = f(x) + f(y) を満たす。 などです。 ここで、 指数関数f(x + y) = f(x)f(y)について、 a^(x+y)=a^x・a^y であることは理解できます。 対数関数 f(xy) = f(x) + f(y)について、 (対数の底はa) log(xy)=logx+logy であることも理解できます。 指数関数a^(x+y)=a^x・a^y 対数関数 log(xy)=logx+logy において、未知関数とはどれですか? a^x・a^yやlogx+logyをy=・・・の形にして yは未知関数と呼ぶのでしょうか? a^x・a^yやlogx+logyをy=・・・の形にどうすれば 出来るでしょうか? 微分方程式の場合、yを求めてyがなにかしらの関数 になるから未知関数と言うのは理解できます。 また、前回の質問で微分方程式 (1)y'=f(y/x) (2)y'=f(x/y) について、 (1)と(2)は線形微分方程式,非線形微分方程式どちら でしょうか? (1)は線形で(2)は非線形だと認識していますが 正しいでしょうか? 以上、ご回答よろしくお願い致します。

  • 変数係数2階線形微分方程式

    変数係数2階線形微分方程式の問題です。 x^2*y(x)''+2x*y(x)'-iαy(x)=0 i:複素数,α:定数 この微分方程式はどのようにして解けばよろしいでしょうか? できるだけ計算過程を詳しくお願いします。 解にはベッセル関数が用いられるみたいです。 自分でベッセルの微分方程式と同様にして解いていっても途中でつまずいてしまいます。 お手数ですがよろしくお願いしたします。

  • 関数

    高校数学(微分) 一応微分の範囲に載ってはいますが、質問の中心は関数の基本についてです。 (原文そのままです) 関数f(x)は微分可能で、f´(0)=aとする。任意の実数x、yにたいして、等式f(x+y)=f(x)+f(y)が成り立つ。f´(x)を求めよ。 (私の考えと疑問点) 関数f(x)と書いてあるだけで、関数y=f(x)とは書かれていないので、この問題では、x(独立変数)、y(従属変数)という関係ではなく、(1)x(独立変数)、y(独立変数)という関係である。 (2)x(任意の定数、数学ではabのようにあらわすことが多い)y(任意の定数) (1)と(2)の捉え方どちらが正しいのでしょうか? どちらも同じようなものな気もするのですが。 また、最初を関数f(y)最後をf´(y)としてやっても結果は同じですよね?

  • 合成関数の偏微分について

    z=f(x,y)で  x=rcosθ y=rsinθ と置いたとき ∂z/∂r = cosθ(∂z/∂x) + sinθ(∂z/∂y)  ∂z/∂θ = r×{-sinθ(∂z/∂x) + cosθ(∂z/∂y)} となりますよね。 次にこれらを ∂z/∂r = P   ∂z/∂θ = Q  とおいて 2階偏導関数 ∂P/∂r = (∂P/∂x)(∂x/∂r) + (∂P/∂y)(∂y/∂r)  ∂Q/∂θ = (∂Q/∂x)(∂x/∂θ) + (∂Q/∂y)(∂y/∂θ)  を求めたいのですが ∂P/∂x や  ∂Q/∂x を求めるときに cosθ(∂z/∂x) についている cosθ や r×{-sinθ(∂z/∂x) + cosθ(∂z/∂y)} についている r は 定数として扱うべきなのでしょうか?それとも変数とみて積の微分法を 用いればよいのでしょうか? 考えてみれば cosθ = x/r で (x,r)の関数ですから cosθは xで偏微分できそうですし r=x/cosθ で (x,θ)の関数ですから rも偏微分できそうです。 しかし解答をみる限りではいずれも定数として扱われているようです 何故だかさっぱりわかりません。 どなたか知恵を貸していただけるとありがたいです。

  • 微分方程式の解き方 (置換の仕方)

    以下の2問の微分方程式の解き方をどなたか教えてください。 (1) sin(x) * cos(y)^2 + y' * cos(x)^2 = C (x:変数, y:xの関数, y':yの導関数, C:定数) (2) y' = (a * x + b * y + c) ^(1/2) (x:変数, y:xの関数, y':yの導関数, a,b,c:定数) 2問ともに適当な変数に置換することは予想がつくのですが,どう置き換えればいいかわかりません。 それと(1)は非同次形の線形微分方程式なんでしょうか? よろしくお願いします。

  • 合成関数の偏微分

    z=f(x,y)で  x=rcosθ y=rsinθ としたとき ∂z/∂r = cosθ(∂z/∂x) + sinθ(∂z/∂y)  ∂z/∂θ = r×{-sinθ(∂z/∂x) + cosθ(∂z/∂y)} となりますよね。 次にこれらを ∂z/∂r = P   ∂z/∂θ = Q  とおいて 2階偏導関数 ∂P/∂r = (∂P/∂x)(∂x/∂r) + (∂P/∂y)(∂y/∂r)  ∂Q/∂θ = (∂Q/∂x)(∂x/∂θ) + (∂Q/∂y)(∂y/∂θ)  を求めたいのですが ∂P/∂x や  ∂Q/∂x を求めるときに cosθ(∂z/∂x) についている cosθ や r×{-sinθ(∂z/∂x) + cosθ(∂z/∂y)} についている r は 定数として扱うべきなのでしょうか?それとも変数とみて積の微分法を 用いればよいのでしょうか? 考えてみれば cosθ = x/r で (x,r)の関数ですから cosθは xで偏微分できそうですし r=x/cosθ で (x,θ)の関数ですから rも偏微分できそうです。 しかし解答をみる限りでは偏微分していません。 誰か教えていただけるとありがたいです。

  • 微分方程式のシャルピーの解法について

    シャルピーの解法に沿って2変数関数u=u(x,y)を含めた微分方程式F(x,y,u,p,q)=0 (p=∂u/∂x,q=∂u/∂y)の解を求める際に特性方程式{dx/(∂F/∂p)}={dy/(∂F/∂q)}=[du/{p(∂F/∂p)+q(∂F/∂q)}]=-[dp/{(∂F/∂x)+p(∂F/∂u)]=-[du/{(∂F/∂y)+q(∂F/∂u)}]というのがでてきますが、これを導く手順についていくつか分からない点があります。 手順1:pとqを共にx,y,uの関数で表し、p=∂u/∂x=p(x,y,u),q=∂u/∂y=q(x,y,u)とする。 ※質問ですがuはxとyの関数なので、xやyで偏微分すると同じくxとyの関数になると思うのですが、ここではあえてそのxとyの式を変形してu=(x,y)を入れ込むということでしょうか? 手順2:2変数関数u=u(x,y)の全微分duはdu=(∂u/∂x)dx+(∂u/∂y)dy=pdx+qdyとなり、これを変形するとpdx+qdy-du=0となる。この式を(1)とおく。(1)はu=u(x,y)-u=C [Cは任意定数でuは独立変数]の解を持つので、積分可能と言える。 ※質問ですが、"(1)が解u=u(x,y)-u=Cを持つ"というのは一体どうして分かるのでしょうか? また、その後に"積分可能と言える"とありますが、"微分方程式が解をもてば、その微分方程式が積分可能である"とも言えるのでしょうか? 手順2の続きです。 (1)は積分可能条件を満たすので、ベクトルA=[p,q,-1]とおくと、A・(rotA)=0を満たす。これを計算すると、-p(∂q/∂u)+q(∂p/∂u)-{(∂q/∂x)-(∂p/∂y)}=0という関係式が導ける。この式を(2)と置く。 手順3:p,qを求めるためにもう1つ関係式G(x,y,u,p,q)=b(bは定数)を用意する。ここでFもGもx,y,uの関数であることが言える。次に(2)の式を解くために必要な(∂q/∂u),(∂p/∂u),(∂q/∂x),(∂p/∂y)を得るためFとGをx,y,uでそれぞれ偏微分する。 まずxで偏微分すると、Fは(∂F/∂x)+(∂F/∂p)*(∂p/∂x)+(∂F/∂q)*(∂q/∂x)=0,Gは(∂G/∂x)+(∂G/∂p)*(∂p/∂x)+(∂G/∂q)*(∂q/∂x)=0という式になる。 ※ここで質問ですが、これらの式はどう解釈したらいいのでしょうか? 例えばF(x,y,u,p,q)=px-qy-u=0という式があった場合x,y,u,p,qを独立変数ととらえた場合(∂F/∂x)=pという式が出てくると思います。 しかし、(∂F/∂x)とは別に(∂F/∂p)*(∂p/∂x)+(∂F/∂q)*(∂q/∂x)という項があるのを見ると、一体この2つの項はどこから出てきたのかが疑問に思えます。xの関数であるpとqの合成関数の微分のようにも見えます。ただuもxとyの関数であるはずですので、なぜ(∂u/∂x)といった項が出てきていないのか分かりません。 手順3の続きです。 次にFとGをyで偏微分すると、Fは(∂F/∂y)+(∂F/∂p)*(∂p/∂y)+(∂F/∂q)*(∂q/∂y)=0,Gは(∂G/∂y)+(∂G/∂p)*(∂p/∂y)+(∂G/∂q)*(∂q/∂y)=0となる。 最後にFとGをuで偏微分すると(∂F/∂u)+(∂F/∂p)*(∂p/∂u)+(∂F/∂q)*(∂q/∂u)=0,Gは(∂G/∂u)+(∂G/∂p)*(∂p/∂u)+(∂G/∂q)*(∂q/∂u)=0 ※ここでも同じ質問ですが、これらの式はどのように考えたらでてくるのか疑問です。 さらにこの手順に従って進めると上に挙げたFとGをx,y,uで偏微分した6つの式から(∂q/∂u),(∂p/∂u),(∂q/∂x),(∂p/∂y)の値が出てきてこれらを(2)の式に代入することで、最終的に{dx/(∂F/∂p)}={dy/(∂F/∂q)}=[du/{p(∂F/∂p)+q(∂F/∂q)}]=-[dp/{(∂F/∂x)+p(∂F/∂u)]=-[du/{(∂F/∂y)+q(∂F/∂u)}]という特性方程式が出て、この中の2つを用いてもう1つのpとqの関係式Gを求めるようです。このFとGからpとqの値が求まるので、これを用いて解を求めるようになっています。 長くなりましたが、私が間違っている箇所も含めて解説していただければと思います。

  • 微分方程式 線形 非線形

    前回の質問の続きです。 前回の質問内容:http://okwave.jp/qa/q7818206.html ラプラス方程式が、2階線形偏微分方程式、 ポアソン方程式が、2階非線形偏微分方程式であることは 理解できました。ありがとうございます。 微分方程式で参考書やインターネットにあった線形微分方程式と 非線形微分方程式を以下に示します。 線形微分方程式 (1)y”+y’-2x=0 (2)y’+xy=1 (3)(x-1)y''-xy'+y=0 非線形微分方程式 (1)(y”)^2+y’-2x=0 (2)x(y”’)^3+y’=3 (3)y・y’+xy=1 上記、線形/非線形の分類に間違いはあるでしょうか? 非線形微分方程式の(3)y・y’+xy=1は、なぜ非線形となるのでしょうか? y・y’+xy=1⇒y’+x=1/y⇒y’+x-1/y=0は線形ではないでしょうか? 線形微分方程式(2)y’+xy=1も、xy’+xy=1となると非線形になるの でしょうか? ご回答よろしくお願い致します。