• ベストアンサー

解析学です

 (1)次の極限を求めよ。  lim 1/n×n^1/2  (1^1/2 + 2^1/2 + ・・・+n^1/2)  n→∞  (2) 不定積分を求めよ。  ∫x-2/x^3+1 dx     (3) f(x)=log(1+x/1-x) にマクローリンの定理を適用せよ。    これらの問題は高3レベルなのでしょうか? とりあえず、数(3)の問題集を見ながらやっているのですが、 なかなかできません。宜しくお願いします。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.4

No.3で回答したcontinuousです。 どうも問題文の書き方に不備があるんじゃないかと思いました。 (1)の問題文ですが、  lim 1/(n×n^1/2)  (1^1/2 + 2^1/2 + ・・・+n^1/2)  n→∞  という意味だとすれば、No.1の回答になります。 問題文は誤解のないように書いた方がいいですよ。

goosasuke
質問者

お礼

すみません。分母をカッコでくくるのを忘れていました。 ありがとうございます。

その他の回答 (3)

回答No.3

(1)の答えは∞のような気がするんですが…。 与式=lim (1/√n)(√1+√2+...+√n) であってますよね?幾何学的な意味を考えると √1+√2+...+√n ≧∫(0~n)√x dx=2/3 n√n (1/√n)(√1+√2+...+√n)≧(2/3)n となり、両辺でn→∞とすれば答えが∞になることがわかります。

  • brogie
  • ベストアンサー率33% (131/392)
回答No.2

(2)のヒントです。 x-2/x^3+1 =(x-2)/(x+1)(x^2-x+1) =A/(x+1)+(Bx+C)/(x^2-x+1) 分からない時は補足をして下さい。

goosasuke
質問者

お礼

 ありがとうございます。参考にして勉強したいと思います。

  • uyama33
  • ベストアンサー率30% (137/450)
回答No.1

(1)だけ答えます。 区分求積ですので、数(3)の範囲です。 ∫(0から1まで)(x)^0.5 dx となって、原始関数の一つは (1/1.5)*x^1.5 1のとき、1/1.5 = 1/(3/2)= 2/3 0のとき、0 ですから 値は、2/3-0 =2/3 です。  

goosasuke
質問者

お礼

 数3の範囲ということは、高校のないようですね。 がんばって勉強します。ありがとうございました。

関連するQ&A

  • 広義積分(大学範囲?)です

    積分の問題です。 (1)積分 ∫(0,∞) n/(n^2・x^2+1)・dx の値を求めなさい。n>0 (2)∀δ>0に対して lim(n→∞)∫(δ,∞) n/(n^2・x^2+1)・dx=0 が成立することを示しなさい。 (3)極限 lim(n→∞)∫(0,∞) n・cosx/(n^2・x^2+1)・dx の値を求めなさい。 (1) (2)は簡単に解けるのですが(3)ができません。 はさみうちの定理を使おうと思ったのですが負が邪魔で答えがでません。わかる方回答お願いします!!

  • 極限値を求める問題です

    よろしくお願いします。 以下の問題を解いていたのですが、いまいち自信がありません。 また、(3)の問題の解き方がどうしてもわかりません。 わかる方、ご指導のほど、よろしくお願いします。 【問題】 ()内の関数の定積分と関連されることにより、次の極限値を求めよ、 (1) lim[n→∞] {(1/(n+1) + 1/(n+2) + … + 1/(n+n)} これを適用する→(1/1+x) 自分の答え =lim[n→∞] (1/n){(1/(1+1/n) + 1/(1+2/n) + … + 1/(1+n/n)} f(x)=1/(1+x), 1/n=hとおくと、 lim [n→0] h(f(h)+f(2h)+…+f(nh)) ∫[0→1] 1/(1+x) dx = [log(x+1)](0→1) =log(2)-log(1)=log(2/1)=log(2) (2) lim[n→∞] {(n/n^2 + n/(n^2+1^2)+…+n/(n^2+(n-1)^2)} これを適用する→(1/(1+x^2)) 自分の答え 各項を、n/(n^2+k^2)=1/(1+(k/n)^2)*1/n (k=0,1,…,(n-1))と表す。 次に、n→∞の極限に移行して、 lim [n→∞] Σ 1/(1+(k/n)^2)*1/n =∫[0→1] 1/(1+x^2) dx = [arctan(x)](0→1) =[arctan(1)]-[arctan(0)]=π/4-0=π/4 (3) lim[n→∞] 1/(n^(a+1)) Σ[k=1→n] k^a これを適用する→(x^a (a>0)) 自分の答え ??? 以上、ご指導のほど、よろしくお願いします。

  • ロピタルの定理でお願いします

    ロピタルの定理でお願いします lim[x→+∞] log(x)/x^(1/n)   (n=1,2,3,...) 答えはマクローリンの公式で0なのは分かっています この式は何型の不定型になるのでしょうか? どなたかご教授をお願い致します

  • 有限の極限値

    lim[x→0][{log(cosx)+√(1+x^2)-1}/x^n] が0以外の有限の極限値を持つように自然数nを定め、その時の極限値を求めよ。 という問題です。 私は、√(1+x^2)をマクローリン展開し、 √(1+x^2)=1+(x^2)/2-(x^4)/8+0(x^6) (0(x)はランダウの記号) としてから、 lim[x→0][{log(cosx)+√(1+x^2)-1}/x^n] =lim[x→0]{-tanx/nx^(n-1)}+lim[x→0][{1+(x^2)/2-(x^4)/8+0(x^6)-1}/x^n] (ロピタルの定理を使いました) n=2のとき =-1/2+1/2 =0 と、題意にそぐわない結果となってしまいました。 どなたか、正答わかるお願いします。

  • 積分の問題です。

    lim(n→∞){1/n+n/(n^2+1)+n/(n^2+2)+...+n/(n^2+(n-1)^2)}の極限を求める問題です。 lim(n→∞) (1/n)[k=0→n-1]Σ1/{1+(k/n)^2}となり、 lim(n→∞) (1/n)[k=0→n-1]Σ1/{1+(k/n)^2}[x=0→1-1/n]∫f(x)dx ≦ (1/n)[k=0→n-1]Σ1/{1+(k/n)^2} ≦ [x=1/n→1]∫f(x)dx +1/n 挟み撃ちの定理をつかって求め、答えはπ/4ということはわかったのですが、途中にでてくる両辺の積分の仕方がわかりません。 できるだけ詳しい途中式を書いていただけるとありがたいです。 最初から(lim(n→∞){1/n+n/(n^2+1)+n/(n^2+2)+...+n/(n^2+(n-1)^2)}から)答え合わせもかねてお願いします。

  • 証明問題 可測 測度論

    可測関数列0≤f_1 (x)≤f_2 (x)≤⋯に対してf(x)=〖lim〗_(n→∞) f(x)とおけば ∫_(-∞)^∞〖f(x)dx=〖lim〗_(n→∞) 〗 ∫_(-∞)^∞ f(x)dx これについて、積分の定義がうまくいったとして、測度論を用いて上の定理をどのように証明したらいいのでしょうか。

  • 広義積分の問題です。

    ∫[1, ∞]1/x(x+1) dx を積分する問題です。 自分で計算したところ、最後に lim[R→∞]log 2R/(R+1) となりました。 この極限はどうなりますか?

  • マクローリンの定理が分かりません!!

     マクローリンの定理について、よく分からない部分があります。  次の関数にマクローリンの定理を適用した場合、どうなるのでしょうか??   f(x)=(1+x)^α f(x)=log(1+x) f(x)=1/√(1+x) f(x)=√(1+x) f(x)=e^(2x)  ただ、2番目のf(x)=log(1+x)について、自分で解いたものと、ある問題の解答と見比べてみたのですが・・・  解答・・・log(1+x)=x - x^2/2 + x^3/3 + … + (-1)^(n-2)x^(n-1)/n-1 + (-1)^(n-1)x^n/n(1+θ)^n  となっていました。  でも、自分で解いたら、最後の項(nの項)が (-1)^(n-1)x^n/n(1+θx)^n と、θの前にxがついてしまいます。  この解答は、たまにミスプリントがあるので、本当がどうなのかわかりません。もし、この解答があっているなら、どうしてxが消えるのでしょうか?  いそいでいるので、早く回答いただけると助かります。  よろしくお願いします。

  • 微分積分

    サイエンスライブラリ理工系の数学=2 改訂微分積分の問題でわからない事があったので質問します。                        lim x→+0 の時 (x^x-(sinx)^x)/x^3の極限値は?という問題なのですがマクローリン展開をsinxにつかってもうまく変形できないし、ロピタルの定理もうまくいかないので困っています。  どなたか教えてください。よろしくお願いします。

  • lim[n→∞]∫[0~1]f_n(x)dx=∫[0~1]f(x)dxが示せません

    宜しくお願いいたしました。 [問]各n∈Nに対し,f_n(x)=nx/(1+nx),x∈[0,1]とする。 数列{f_n}は[0,1]で積分可能関数fには各点収束するが一様収束しない事を示せ。 そしてlim[n→∞]∫[0~1]f_n(x)dx=∫[0~1]f(x)dxとなる事を示せ。 で「lim[n→∞]∫[0~1]f_n(x)dx=∫[0~1]f(x)dxとなる」が示せずに困っています。 f(x)= 1/e (x=1の時) 1 (0<x<1の時) 0 (x=0の時) と積分可能関数fが求めました。 でも 0<x<1の時 lim[n→∞]∫[0~1](f(x)-f_n(x)) =lim[n→∞]∫[0~1](1-nx/(1+nx))dx =lim[n→∞]∫[0~1](1/(1+nx))dx =lim[n→∞][-n/(1+nx)^2]^1_0 =lim[n→∞](-n/(1+n^2)+n) となり0になりません。何か勘違いしておりますでしょうか?