• ベストアンサー
  • 困ってます

演算子について

基本的な質問だったら申し訳ないのですが、自分ではちょっと解決できないのでお答えいただけたらありがたいです。 シュレディンガー方程式の波動関数ψ(x)の問題でエネルギーの期待値を求めるときには演算子としてih'd/dxを使うというのは教科書にかいてありわかったのですが、x自体の期待値を求めよという問題では何か別の演算子をつかうのでしょうか? 的を得た質問でなっかたらすいません。

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数72
  • ありがとう数2

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3

位置 x の演算子は、x なのでそのままでいいです。 よって <x>=∫ψ* x ψ dx ですね。 量子力学では、運動量演算子 -ih'd/dx のように、物理量が演算子で表現されるので、掛け算の順番を勝手に変えたりしないように気を付けて下さいね。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

丁寧な解説ありがとうございます!!おかげさまでできました!またわからないところがあったときはお願いします!

その他の回答 (2)

  • 回答No.2
  • uma007
  • ベストアンサー率23% (9/39)

↓は-ih'd/dxでした

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます。頑張ってといてみます。またわからない事があった時はよろしくお願いします

  • 回答No.1
  • uma007
  • ベストアンサー率23% (9/39)

xの期待値はxを使います。 ちなみにih'd/dxは運動量の演算子です。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 運動量演算子について

    シュレディンガー方程式でハミルトニアンのうちの運動エネルギーのところがなぜ、運動量演算子を二度同じ波動関数に二階の偏微分のようにかけるのかよくわかりません。古典力学でのp^2/(2m)はわかるのですが、それがなぜ、二階の微分になるのでしょうか?どちらかと言うと波動関数に運動量演算子を掛けた結果を二乗するなどの方がしっくりくるのですが、どなたか説明していただけると助かります。

  • 一次元の井戸型ポテンシャル中の自由粒子についてハミルトニアンを導くとこ

    一次元の井戸型ポテンシャル中の自由粒子についてハミルトニアンを導くところなんですが 全エネルギー E = p^2 / 2m + U(x) --(A) p <- -ih d/dx (hは棒付き) --(B) ∴ H^ = (-h^2 / 2m) d^2/dx^2 + U(x) --(C) において、 (1) (B)運動量演算子 -ih d/dx がいきなりでてくるのがわかりません。教科書など見てもこの導き方が載っていません この運動量演算子というのは波動関数に作用させると運動量になるというものなのでしょうか (2) (C)ハミルトニアンは演算子なのに、U(x)の部分はただのスカラーになっていますがいいのでしょうか (3) (1)で運動量演算子を波動関数に作用させたものが運動量ならば、波動関数に(C)を作用させたものは、(運動エネルギー)+(ポテンシャルエネルギー×波動関数)になってしまいませんか? そうするとシュレーディンガー方程式は (運動エネルギー)+(ポテンシャルエネルギー×波動関数)=(全エネルギー×波動関数) となって、次元が合わないような状況になってしまいませんか? 質問の意味がわからなかったらすぐ補足するので、1つでもいいので教えてください。よろしくお願いします。

  • 演算子

    量子力学の質問です。単純な例で、例えば、波動関数が基底ベクトル i と j であらわされていて、例えば、 ψ=Ci i + Cj j (Ci と Cjは複素数) として、例えば、 Q という演算子の行列(2x2 の行列で成分Q1,1, Q1,2, Q2,1, Q2,2 とする)をかけると ψがQψに写像されますが、 Qψ=(Ci Q1,1 + Cj Q1,2) i + (Ci Q2,1 + Cj Q2,2) j の物理的な意味は何でしょうか? ψ* Q ψ (ψ* はψの複素共役) がQの演算子で計算される期待値というのはわかりますが、Qψにはなにか物理的な意味がありますか?それともψ* Q ψ を計算する過程ででてくるだけでしょうか? (ψの物理的な意味は、 i という状態と j という状態の重ねあわせで i になる確率が、Ci^2, jになる確率が Cj^2 と理解していますが、それと似たような理解がQψにはあるのでしょうか?)

  • 運動量の演算子について

    量子力学において、運動量の演算子p^ = -ih∇(hはプランク定数を2πで割ったもの。エッチバーを表記できなかったため、代用しました) だと教わりました。これは、波動関数ψ=Aexp{ (px-Et)i/h } (Eはエネルギー) に対して、 -ih∇ψ=pψ になるからである、という説明を読みました。ここで質問です。 ψの共役複素数である、ψ*=Aexp{ -(px-Et)i/h }に対しては、 ih∇ψ* = pψ* となることから、p^ = ih∇なのでしょうか? それとも、p^は場合によらず、p^ = -ih∇なのでしょうか? ご回答よろしくお願いします。

  • 波動関数が関係する期待値について

    期待値は、波動関数ψが規格化されているとすると  <f(x)>=∫dxf(x)P(x)=∫dxψ*f(x)ψ のようにあらわされると教科書に書いてありました。この場合、P(x)=ψ*ψであるようですが、そうすると  <f(x)>=∫dxf(x)ψ*ψ のようにあらわしてもよいことになります。f(x)=pつまりf(x)を運動量とするとき、運動量は演算子に置き換えることができますが、このような交換可能であるとするとどの関数に運動量演算子がかかっても結果は変わらない、ということになります。 これは明らかに違うのではないか、と思ったのですが、実際  <f(x)>=∫dxψ*f(x)ψ=∫dxf(x)ψ*ψ のようにしてもよいのでしょうか?

  • シュレーディンガー方程式 演算子

    シュレーディンガー法式でポテンシャル、V=0とし、運動エネルギーの演算子K(x)=-A(d^2/dx^2)と運動量の演算子を求めれます。 この事で質問なのですが、V=0の時に導出した運動エネルギー、運動量の演算子をポテンシャルがゼロでない時の波動関数に作用させて、得られた固有値がそれぞれの物理量になるとしてもいいのでしょうか?それとも、ポテンシャルがゼロでない時には、また別の運動エネルギー、運動量の演算子が存在するのでしょうか? ご回答よろしくお願いします。

  • (スピン演算子で)磁性の判定をするには?

    正規化された波動関数|Ψ>が与えられた時に、その状態が強磁性か、常磁性か、はたまた反強磁性かを調べたいと考えています。 全スピン演算子S=(Sx,Sy,Sz)としたとき、Stot=<Ψ|S^2|Ψ>を調べれば、強磁性かどうかはわかります。問題は、Stot=0の時に常磁性なのか、反強磁性なのかが分からないということです。 単純に考えて、「全スピン演算子の二乗」ではなく「局所位置でのスピン演算子」について計算すればいいのではないだろうか?と考えています。具体的には、各サイト位置で<Ψ|S|Ψ>=(<Ψ|Sx|Ψ>, <Ψ|Sy|Ψ>, <Ψ|Sz|Ψ>)を算出してみました。 しかしながら、結果を見ると、どうもおかしいように思えます。 以下に行った計算例を挙げます。 例: |Ψ>=A(|↑↓>-|↓↑>) A=1/Sqrt(2) この波動関数のStotは0になりました。ですので、強磁性ではありません。 しかし<Ψ|S@1|Ψ>=(0,0,0) <Ψ|S@2|Ψ>=(0,0,0)となってしまいます。 S@1はサイト1に作用する演算子という意味です。 よろしくお願いします。

  • ハイゼンベルグの運動方程式

    量子力学●ハイゼンベルグ方程式について質問します。 ハイゼンベルグの運動方程式: dA(t)/dt=i/h[H(t),A(t)]ですけど(h=hバー), [e^(itH/h)Ae^-(itH/h)≡A(t)] これは物理量演算子Aが時間に依存する形になっていますが、これとシュレディンガー方程式: ih∂ψ(t)/∂t=Hψ(t)における,波動関数がψ(t)と、時間に依存することの違いは何なのかが分かりません。 波動関数が時間発展するというイメージはまだ分かりますが、演算子が時間変化するとはどういうことなのでしょうか?

  • 量子力学において運動量を微分演算子に代える物理的意味

    量子力学をきちんと物理的,数学的に理解したいので,独学で量子力学を勉強しています.学部時代は量子力学の授業がなかったこともあり,正直分からないことだらけで不思議に思うことがたくさんあります. そのうちの一つとして,ある原子内の電子群を考え,ハミルトニアンHを持つ系だとすると,波動関数Ψの絶対値の二乗(存在確率)で存在する原子内にある一つの電子は,あるエネルギ準位(固有値)εしか取り得ないという考え方をシュレディンガー方程式 HΨ=εΨ で表される固有値問題に帰着するということをとりあえず納得したとすると,線型代数学で出てくる固有値問題 Ax↑=λx↑ のように「ある固有ベクトルx↑に対してある固有値λが決まる」 ということと似ているのでなんとなく分かります. 波動方程式からシュレディンガー方程式を導出していくこともなんとなく分かりました.分からないことは,シュレディンガー方程式の導出として,ハミルトニアンを波動関数に作用させ,ハミルトニアン中に含まれる運動量を微分演算子に代えれば,シュレディンガー方程式になっているということです.この方法は,結果として成り立つだけで,後付けくさいなあと感じました. 過去にも同じような質問をされていた方 http://oshiete1.goo.ne.jp/qa587812.html がいましたので見てみると,運動量を微分演算子に代えるのは数学的には導けるようですが,その導く過程が物理的には分かりにくいと感じました. 量子力学を勉強する前に基礎知識が不十分なのもあるとおもいます. なので,量子力学を勉強する前に習得するべき学問は何かと,どの順番で勉強すれば効率がよいかも教えていただきたいです. (1)量子力学において,運動量を微分演算子に代えることの物理的意味は?もっと一般的に,その他の物理量(角運動量,スピン角運動量など)を演算子に代えることの物理的意味は? (2)量子力学を勉強する前に習得するべき学問は何かと,それらをどの順番で勉強すれば効率がよいか? です.長くなりましたが,よろしくお願いいたします.

  • 波動関数

    波動関数 レポートで 原子番号Zの原子についてその1s軌道の波動関数が Φ1s=[{Z^(3/2)}/√π]exp(-Zr) で表わされるときrの期待値を求める演算子をr*とし、その期待値r-を計算する式を導出せよ。 という問題で、ヒントに r-=∫∫∫Φ1s* r* Φ1sdxdydr の三重積分を極座標へ変数変換して計算すればよい となっているのですが、よく意味がわかりません…。Φ=xa+xb のとき、Φ*=xa-xbだと思うのですが、ではこの問題のような式だと、Φ*はどのように表わされるのでしょうか????とても基本的な問題で申し訳ないのですがよろしくお願いします。