• ベストアンサー
  • すぐに回答を!

運動方程式の考え方

質量mの金属球に長さLの糸の先端を接着剤でつける。糸の他端を点Oに固定して鉛直に垂らす。球に水平な初速度v(0)を与える。ここで直交座標を点Oを原点とし水平方向(右向き正)をx軸、y軸(上向きを正)のように取るとき、運動方程式は、(Sは糸の張力)   mdv/dt=-mgsinψ(接線方向)…(1)   mv^2=S-mgcosψ(向心成分)…(2)  (1)(2)に速度を内積して,辺辺加え  初期条件ψ=0,v=v(0)を考慮して   S=mg(v(0)^2/gL-2+3cosψ)…(3) が導けるが、 v(0)^2/gL=5(ψ=π)のとき、S=0,この時刻をt(0)とする。t(0)<tの時、(3)を利用して S>0を示し円軌道を続ける。ここがすっきりしません。t(0)<tの時、円軌道上にある保障はないのに、どんな本も(3)(「つまり(1)(2)の運動方程式が成り立つことを前提として」)より説明されています。つまり、t(0)まで円軌道しているのでΔt(極めて短い時間)後も円軌道上にあるはずであるから(つまり、運動方程式瞬間では変われないから)(1)(2)が成り立つとしてよいから(3)が成り立つのでS>0と考えてよいのでしょうか。ご指導を宜しくお願いします。

共感・応援の気持ちを伝えよう!

  • 物理学
  • 回答数3
  • 閲覧数195
  • ありがとう数4

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

古い本のようですが 基礎物理学選書22、力学演習、野上茂吉郎著、裳華房、1982年 のP93の問い4.11、解答P99-102に詳しいです。 それによると初速が中間の速度のときにひもがゆるみ、S>0とならない領域が示されています。 参照できれば良いのですが。

共感・感謝の気持ちを伝えよう!

質問者からの補足

ご指導ありがちうございます。私の疑問は、t(0)<tの時、円軌道上にある保障はないのに、どんな本も(3)(「つまり(1)(2)の運動方程式が成り立つことを前提として」)より説明されています。つまり、t(0)まで円軌道しているのでΔt(極めて短い時間)後も円軌道上にあるはずであるから(つまり、運動方程式瞬間では変われないから)(1)(2)が成り立つとしてよいから(3)が成り立つのでS>0と考えてよいのでしょうか。ご指導を宜しくお願いいします。

その他の回答 (2)

  • 回答No.3

概略として前述の教科書によると「(3)が成り立つのでS>0と考えてよい」ではなく(1)(2)が成立する ので(3)が導け、この式の中でS>0の範囲を考察しようということだと思います。 #2さんの解答の補足と同じことが書いてあるようです。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ご回答ありがとうございました。

  • 回答No.2
  • peck55
  • ベストアンサー率11% (1/9)

専門外なので間違ってるかもしれませんが・・・ v(0)^2/gL=5(ψ=π)のとき、S=0,この時刻をt(0)とする場合、t(0)の時がSの最小値ですから、この条件であれば常に、S≧0と成るので、糸は緩む事は有りませんから、糸が伸び無い限り円軌道は保障されるのでは無いですか。?

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ご回答ありがとうございました。

質問者からの補足

ご回答ありがとうございます。2<v(0)^2/gL<5のときは、v(0)^2/gL=2-3cosψを満たすψでS=0になり、その後、放物運動になります。

関連するQ&A

  • 振り子の運動について

    図のような振り子の運動で、物体がある高さまで上がった時、糸がたるんだとします。 その時のθの値をθmaxとした時、そのθmaxを求める問題です。 (Lは糸の長さ、Tは糸の張力、V0は接線方向の初速度です) 自分で解いて見たのですが、自信がないので、答案が合っているかどうか見ていただけないでしょうか。 まず、運動方程式を立てると θ方向:mLθ"=-mgsinθ L方向:mV^2/L=T-mgcosθ (Vは接線方向の速度) となり、さらにエネルギー保存則により 1/2(mV^2)+mgL(1-cosθ)=1/2(mV0^2) これをL方向の運動方程式に代入すると cosθ=(2gL-V0^2)/3gL+T/3gm ここで、糸がたるむということはT=0ということなので cosθ=(2gL-V0^2)/3gL よってθ=arccos(2gL-V0^2)/3gL このような解き方で合っているでしょうか。  

  • 質点の運動方程式のベクトル表現

    質量mの質点を時刻t=0で初速度>0で水平方向に投げた。 運動はxy平面内で起こり、質点を打ち出した向きにx軸を、上向き鉛直にy軸をとり、初期の質点の位置を原点とする。質点は速度に比例した抵抗を受ける。これは -ηv→ と表現する。重力加速度をg→として (1) 質点の運動方程式をベクトルの形でかけ (2) (1)で得られた運動方程式を解き、質点の速度をtの関数として表せ (3) 質点の位置をtの関数として表せ (4) 質点がx軸方向に進むことのできる最大の距離を求めなさい。 ゆっくりとしっかり内容把握に努めたいので解答だけじゃなくて解説まで丁寧にしていただければ幸いです。

  • 運動方程式から波動方程式の導出

    一本の綿密度ρ_l の弦が張力Tでx軸方向にまっすぐに張られている。張力は重力に比べて十分大きく、糸にかかる重力は無視できるものとする。 時刻tに弦の上の点Δxにおいて、弦は平面内でx軸に垂直にζ(x,t)だけ変位している。 図に示すようにx+Δxでの変位をζ+Δζとし、微小領域の運動方程式を立てて計算すると 変位ζ(x,t)を支配する方程式として最終的に (∂^2ζ)/(∂t^2)=v^2(∂^2ζ)/(∂x^2) となる。 ただしv=√(T/ρ_l) とする。 微小領域の運動方程式をたてて計算し上記の波動方程式を導け この問題がわかりません わかる方がいれば教えてくださいお願いします。

  • 運動方程式

    運動方程式(長文失礼します) 写真は教科書の図をノートに写したものです。 (下の図についての教科書の記述) 質量mの物体に軽くて伸びない糸をつけて、鉛直上向きに引く。このとき、鉛直上向きを正として、意図が物体を引く力をTとし、物体に生じる加速度の大きさをaとすると、物体の運動方程式はma=T-mg。 (上の図についての教科書の記述) 滑らかな水平面上に、軽くて伸びない糸Cで繋がれた物体A,Bがある。Aを水平方向右向きに大きさFの力で引くと、A,Bは糸で繋がれたまま、ともに右向きに動く。この時、糸C がBを引く力の大きさをTとすると、糸C は同じ大きさT の力で、Aを左向きに引いている。A,Bの質量をそれぞれM,mとし、右向きを正として、加速度をaとすると、それぞれの運動方程式はA;Ma=F-T,B;ma=T、A,Bを一体と考えたときの運動方程式は、(M+m)a=F (疑問) (1)下の図の事象についてはmgを運動方程式に入れ、上の図の事象については、入れていないのはなぜでしょうか? (2)図にa(加速度の方向)が書かれていますが、これはどうやって判断して記入しているのでしょうか? まさか、「こうなりそう」で書いているわけではないでしょうから (3)上の図の教科書の記述 A,Bを一体と考えたときの運動方程式は、(M+m)a=F これはどのように考えて、立式しているのでしょうか? (4)両方の問題で軽くて伸びない糸と書かれていますが、これは質量を考えない事以外に何か問題に関係してきますか? どうか宜しくお願いします。

  • 運動方程式について(初歩質問)

    はじめまして。よろしくお願いします。 運動方程式の立て方についてお聞きしたいのですが、 問題で、物体を地上の一点から、水平面(xy方向)と角度Θの方向に初速Vゼロで投げるときの運動方程式が F(ベクトル)=(0,0,-mg)となるようなのですが、 なぜ、X方向のV0cosΘと、鉛直方向Z方向のV0sinΘは 無視されるのでしょうか? 私の考えでは 1、投げ上げた瞬間~最高点到達まで F=(v0cosΘ,0,v0sinΘ-mg) 2、最高点到達後~地面につくまで  F=(v0cosΘ,0,-vosinΘ-mg) だと考えてしまいました。 また、1軸だけで(例えば水平右向きを正にとる。など)で考えるのかな?そうならばわかるなと思ったのですが、 違う問題で 質量mの物体を、傾斜角αの斜面の下から初速V0で直上昇させる場合で、 斜面をX軸とし、その斜面に垂直をY軸とすると F=(-mgsinα-μN,N-mgcosα,0)となるようで、 これだと斜面上方を正とする軸と、斜面に鉛直上方を正とする軸というふうに2軸で考えているんで・・・・・ というように、運動方程式がよくわかりません。教えていただけませんでしょうか?

  • 放物運動の運動方程式を解く

    問題は、 (1)放物運動の運動方程式を書け。(z軸とx軸の平面での運動) (2)その方程式を解け。ただし初期条件は、t=0のときr(0)(ベクトル)=0=R0,v(0)(ベクトル)=V0=V0cosαex(単位ベクトル)+V0sinαez(単位ベクトル) (3)軌道を求めなさい。 (4)αが何度の時x軸の到達距離が最大になるか。 です。 (1)はmx"=0,mz"=-mgと解けたのですが、(2)の答えがx=V0cosαt,z=-(1/2)gt^2+V0sinαtとなるのが解けません。どうやって解くのでしょうか。 また(3)の答えが-1/2・(g/V0^2)・(1/cos^2α)・x^2+tanαxとここまでは分かるのですが、次の =-(1/2)・(1/V0^2)・(1/cos^2α)(x-(V0^2sin2α/2g))^2+(1/2)(V0^2/g)・sin^2α という変形が分かりません。どうして分子のgが分母にいってしまったのか分かりません。もしかしたらノートの写し間違いかもしれないのですが、どなたか分かる方教えて下さい。あとできたら(4)も教えていただけるとありがたいです。

  • 力と運動の問題について質問

    高2のものです。問題の解答に自信がないのとわからないところがあるんでお願いします。 「質量mのボールを初速Vで水平面と角度シータで上方に上げた。ボールが飛び出すところを原点とし、鉛直上向きにy軸、初速度がxy平面になるように水平方向にx軸を選ぶことにする。ここでは空気の抵抗力Rが速度vに比例する場合を考える。すなわち抵抗はーv方向を向くのでR=-cvである。ただし、c(0>)は比例定数である。重力加速度をgとして次の問いに答えよ。 (1)ボールの速度と位置を時刻tの関数として表せ (2)(1)で得られた速度の式から終速度(十分に時間がたったときの速度)をもとめよ (3)ボールの軌道の方程式(xとyの関係式)を求めよ」 という問題です。 (1)はx軸方向の速度「vx=Vcos」,y軸方向「vy=Vsin-gt」 x軸方向の位置「x=Vcos*t」でいいんでしょうか?? (1)のy軸の位置と(2)(3)がわかりません。また抵抗はいつどのように式にいれるのかわかりません。 面倒ですがお願いします

  • 大学の物理の問題ですが至急教えてください

    滑らかな水平軸を持つ質量M、半径aの剛体円板に軽い糸をかけて、その両端に質量m1、m2の質点を取り付ける。 この円板を角速度ωで回転させたときの運動を考える。 2つの質点は糸により連結しているから、同じ加速度αで鉛直方向に運動する。 質量m1に働く糸の張力をT1、質量m2に働く糸の張力をT2とし、重力加速度の大きさをgとして次の問いに答えなさい。 1.各質点の鉛直方向の運動方程式 2.水平軸回りの回転運動方程式 3.円板の中心角θと回転に伴い繰り出される糸の長さsの関係 4.加速度αの大きさ 5.質量m1の質点に働く糸の張力T1の大きさ 6.質量m2の質点に働く糸の張力T2の大きさ 以上の解答を教えてくださいお願いします。

  • 斜面を移動する物体の運動方程式

    摩擦のある斜面を移動する物体の運動方程式を求めたいと思っています. このときx-y軸は斜面に水平な方向と鉛直な方向として良いのでしょうか? またラグランジュ方程式を用いて求める場合も同じようにx-y軸をとって良いのでしょうか?

  • 高校物理、、円運動

    . 糸につけた質量mのおもりが鉛直面内を運動する。重力加速度をgとする。 A重りが全ての位置で半径rの円運動する場合、 (1)角度θとなる点Pでおもりの速度がvのとき、糸に加わる力Sをもとめよ。 (2)おもりが円運動出来る最小の速度で回転している場合、任意の角度θにおける速度を求めよ。 B半径rの円運動から外れる場合 (3)円軌道上の0<θ<π/2の範囲にある点Pでおもりが接線方向に運動できる最小の速度vが与えられた、この速度を求めよ。 (4)(3)のとき、重りが円運動可能な角度の範囲を求めよ。 (疑問) (2) 最高点での円の中心方向への釣り合いについて、最高点の速度をVとすると、 mV^2/r(遠心力)=mg+S この釣り合いに関してS=0のとき、Vは最小でV=√grこれが回転できる最小の速度である。 Pと最高点のエネルギー保存について、Pでの速度をvとして、 1/2mv^2+mgrcosθ=1/2mV^2+mgr したがって、v=√gr(3-2cosθ) vについて、θ=πの時、最大で、v=√5gr、θ=0のとき、最小でv=√gr B(3)Pでの中心方向での力のつり合いについて mv^2/r=mgcosθ+S S=mv^2/r-mgcosθ S=0として、v=√grcosθ (4)力学的エネルギー保存則より、y軸に対称な点P`まで上がるから任意の角をφとすると、 θ≦φ≦2πーθ (2)でぎりぎり回転できる速度を求めるとき、S=0としているのに、(3)で円軌道を外れる速度を求めるのにS=0とするのがわかりません。 また、(4)はなにをしているのかがわかりません。 (初学者ということもあってか解いたことがない問題に対して考えて自分で答えを出すのが苦手です)