• ベストアンサー

計算式の全微分について

はじめまして。全微分の問題で式の扱いに困ってしまったものがありまして、お力貸していただければと思い質問させていただきました>< Z=X^n exp(y^m)を全微分!という問題なのですが、途中まで考えてはみたものの。。 dZ=n X^n-1 dexp(y^m) + *** dX^n んーexp(y^m)を微分するとどうなるのか(***の部分) 表記しづらい計算式で申し訳ないのですが、expの扱いがどうもひっかかってます。 よろしくお願いいたします。

質問者が選んだベストアンサー

  • ベストアンサー
  • KENZOU
  • ベストアンサー率54% (241/444)
回答No.1

全微分:dZ=(∂Z/∂x)dx+(∂Z/∂y)dy 右辺第2項の計算で止まっておられるのですね。 そこでf=-exp(y^m)をyで微分してみましょう。これを見通しよくやるためにt=y^mと置換してやります。するとf=-exp(t)。そして合成関数の微分法を使って ∂f/∂y=(∂f/∂t)(∂t/∂y) ここで∂f/∂t=-exp(t)、∂t/∂y=my^(m-1)となります。あとの計算はもういいですね。

masakix
質問者

お礼

置換する、考えてなかったです。 参考にさせていただきます^^ ありがとうございました。

関連するQ&A

  • 全微分の問題です。合ってるかどうか分かりません。確かめてください。お願いします。

    次の関数の全微分を求めよ。 (1) z=1/(√x^2+y^2) 解:dz=-x/{√(x^2y^2)^3}dx-y/{√(x^2y^2)^3}dy (2) z=tan^-1(x^2+y^2) 解:dz=2x/{(x^2+y^2)^2+1}dx+2y/{(x^2+y^2)^2+1}dy (3) z=exp(1/x^2+y^2) 解:dz=-[2x/{(x^2+y^2)^2}]e^{1/(x^2+y^2)}dx-[2x/{(x^2+y^2)^2}]e^{1/(x^2+y^2)}dy

  • 簡単な微分方程式がとけない!!

    一階微分方程式を解いたのですが、検算であいません。どこがおかしいのでしょうか? (d/dx-n/x+1/n)y=0 ⇔dy/dx=(n/x-1/n)y ⇔1/y dy/dx=n/x-1/n (yで割って、変数分離) ⇔∫dy/y = ∫(n/x-1/n)dx (xで積分) ⇔Log(y) = nLog(x)-x/n+c (cは定数) ⇔y=c' exp(n) xexp(-x/n) (c'=exp(c)) yは求まります。しかし検算すると、 dy/dx =c' exp(n) exp(-x/n)-c'/n exp(n) xexp(-x/n) となり、 (n/x-1/n)y=(n/x-1/n)c' exp(n) xexp(-x/n)      =c' exp(n){nexp(-x/n)-1/n xexp(-x/n)) =c' exp(n) nexp(-x/n)-c'/n exp(n) xexp(-x/n) となって、n倍異なる部分があります。どこが間違いなんでしょうか?私はまったく矛盾に気が着ませんが、間違っているように見えます。どなたか知恵を貸してください。

  • 過程の計算を教えて下さい!

    dy/dz =(dy/dx)(dx/dz) ={(x-1)^(-1)}^(n+1)・1 =(-1)^(n+1)*(n+1)!/(x-1)^(n+2) =(-1)^(n+1)*(n+1)! /(z-1)^(n+2) よりdy/dz=(-1)^(n+1)*(n+1)!/(z-1)^(n+2) の式のyにy={(x-1)^(-1)}^(n) (※x=z)を代入して整理したら (d/dz)^(n+1){1/(z-1)}=(n+1)!(-1)^(n+1)/(z-1)^(n+2)と導けるでしょうか? 仮に導ける場合は導くまでの過程の計算をわかりやすく教えて下さい。

  • z=(-x/y)*(dy/dx) を dz/dxで微分すると?

    z=(-x/y)*(dy/dx) を dz/dxで微分すると? 微分に関して分らない問題があります。 あるテキストの解法の途中で、 「z=(-x/y)*(dy/dx) ⇒ dz/dxで微分 ⇒ dz/dx=(2/y)-(2x/y^2)*(dy/dx)」 となっているのですが、この原理について、調べてみてもなかなか見つかりません。 どなたか原理の分かる方おられませんでしょうか。

  • 微分方程式つまらなさすぎる(?)悩み

    (1) dy/dx=f(ax+by+c)のときax+by+c=zとおいて zに関する微分方程式を作れ。 (2) (1)を利用して、微分方程式dy/dx=x+y+1を解け。 この問題について質問があります。まず(1)についてですが、 答えが dz/dx=a+bf(z) でした。私はもっと変形できるのかと 思いずっと悩んでいました。でもこれが答えだったんです。 何をもって”微分方程式”というのでしょうか?また(1)の答えは これ以外にはあり得ないのでしょうか?例えばdxじゃなくてdy が入っていてもいいと思うし、なぜxが選択されたのか不明です。 次に(2)の解説の中で、x+y+1=zとおくと、(1)から dz/dx=1+z・・・(1) 1+z=0 は(1)の解である。・・・ となっていました。なんで1+z=0 が(1)の解になるのでしょうか? これはすなわちdz/dx=0 ということだと思うのですが何をもって この解が導かれたのかさっぱりです。脚注にも説明はありませんでした。 またf(z)がzと表記が変わったことにも違和感を覚えます。 回答よろしくお願いします。

  • 微分 やり方を見せてほしいです

    y=-3ln(1-x)^2 を微分せよという問題です。 私のやり方 (1-x)を u とする y=-3lnu^2 u^2 をzとする y=-3lnz dy/dx = (dy/dz)(dz/du)(du/dx) =(-3/z)(2u)(-1) =6/u =6/(1-x) となります。 答えはこれで合っているのですが無駄なやり方をしてる様に思います。 普通はどんなやり方をしているのでしょうか?

  • 偏微分の計算について

    偏微分について学んでいます。 微分したい文字以外は係数とおいて計算するまではわかりました。 しかし以下のような偏微分の計算の仕方について困ってます。 「z=x^2+y^2+2xyの2変数関数についてx,yのそれぞれで偏微分せよ。」という問題で、 ∂z/∂x=2x+2y、∂z/∂y=2y+2x ∂^2 z/∂x^2=2、∂^2 z/∂y^2=2 という計算まではできるのですが、 「∂^2 z/∂x∂y=2」「∂^2 z/∂y∂x=2」となる意味がよくわかりません。 ∂^2 z/∂x∂y=2、∂^2 z/∂y∂x=2という答えを導くには 上の4つの ∂z/∂x=2x+2y、∂z/∂y=2y+2x ∂^2 z/∂x^2=2、∂^2 z/∂y^2=2 のどれを使って、どう計算すればいいのでしょうか? よろしくお願いします。

  • 全微分について

    全微分公式は dz=∂z/∂y・dy+∂z/∂x・dx ですが、 全微分可能性は、ε(x,y)/(√dx^2+dy^2)→0 ですよね。 全微分可能性は、ちょうど接平面の対角線の高さとΔzの差を、ΔxとΔyを一辺とする長方形の対角線である(√dx^2+dy^2)で割って極限を取るという形になっています。 そうならば、全微分も、Δz/(√Δx^2+Δy^2)であるべきですよね。それが、なぜ上式になるのかわかりません。 僕にはそれぞれの成分が、接平面のxの変化によるzの増分とy方向の変化によるzの増分を足すと、zの増分になるとしか意味しておらず、 微分の微分係数を求めるつまり、平均変化率の極限値になっていないと思うのですが・・・ 確か、dy/dx=接戦の傾きで、上式では単に成り立つよねとしか言えていないような・・・・

  • 偏微分

    偏微分を用いて、全微分をするとき 例えばx,y,zの時間に依存する変数からなる関数f(x,y,z)を時間で全微分する時、 df/dt=(df/dx)(dx/dt)+(df/dy)(dy/dt)+(df/dz)(dz/dt) となると思うのですが、 仮に、x,を時間だけでなく、もう一つ時間に依存する関数n(t)を与えるとします、 つまり X=x+n(t) f(x) => f(X)=f(x+n(t)) になるとします。 その時、時間の全微分はどうなるのでしょうか? f(x+n(t))はxとn(t)に依存しているので、f(x,n(t))と書いて f(x+n(t))=f(x,n(t)) df(x+n(t))/dt=(df(x,nt)/dt)=(df/dx)(dx/dt)+(df/dn)(dn/dt) としてもいいんでしょうか? 後どのような時、偏微分しても可能なのか教えて頂ければ幸いです。 どなたか分かる方よろしくお願いします。

  • 微分方程式

    x(dy)/(dx)+2y=xという微分方程式を解くのですが、これをxでわると (dy)/(dx)+(2y)/(x)=1となるのはわかるのですが、その後、 z=(y)/(x),y=xz・・(1)として (dy)/(dx)=z+x(dz)/(dx)・・(2) となる(1)から(2)への展開のところがわかりません。 (2)の左辺はyをxで微分しているのがわかるのですが、右辺の意味がわかりません。教えて下さい。