• ベストアンサー

中央値の求め方の証明

 n個の整数が存在したとき、nが偶数である場合の中央値は(n/2 + n/2+1)*1/2であり、nが奇数である場合の中央値はn+1/2であることを証明せよ。  という問題を自分で作ってみたのですが、この問題の証明の仕方でいい解答をいくつか自分で考えてみたのですが、皆さんならどう証明するか(証明の仕方)を教えてください。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.2

一般的に「中央値」というのは 「数値を大きさの順に並べた際に中央にくる値」を指す言葉ですよね。 http://www.db.fks.ed.jp/txt/60000.1980kyoushi_tameno_toukei_nyumon/html/00011.html つまり同じ「3個の整数」であっても 値が1, 2, 3であった場合の中央値は 2 値が100, 200, 300であった場合の中央値は 200 となり データの個数nによって一般化できるようなものではないと思われますが・・・。 また、偶数個の場合の中央値として挙げられている >(n/2 + n/2+1)*1/2 この式は結局 (n+1)/2 となるので、結局奇数個の場合の式と同じなのでは? 奇数個の場合の式が (n+1)/2 ではなく n+(1/2) を意味するとしたら その式は中央値を表すようなものにはなり得ないでしょうし。 「1から始まりnで終わるn個の連続した自然数の中央値は (n+1)/2 となる」 という意味であるならば成立すると思いますが。 私が何か誤解をしているようでしたらごめんなさい。

その他の回答 (2)

  • elmclose
  • ベストアンサー率31% (353/1104)
回答No.3

まず、「n個の整数が存在したとき、nが偶数である場合の中央値は(n/2 + n/2+1)*1/2であり、nが奇数である場合の中央値はn+1/2」とはなりませんので、このことの証明はできないと思います。 反証としては、 n個(nが奇数)の整数が{10,11,12}のとき、中央値は11であるが、n+1/2は、7/2となる。 rankleさんがおっしゃりたいことは、 「1からnまでの連続するn個の整数が存在するとき、中央値は(n+1)/2」とか、そういうことでしょうか?

回答No.1

なぜ偶数と奇数を分けているのか分かりませんが、1からnまでのまん中は(n+1)/2でいいのでは??

関連するQ&A

  • 整数問題の証明

    「ある整数n(n+2)が8の倍数ならばnは偶数であることを証明せよ。」 という問題で、この問題の解答を一応書いておくと、 「n(n+2)が8の倍数ならばnは奇数であると仮定すると、 n=2k-1(kは整数)とおいて、 n(n+2)=(2k-1)(2k+1)=4k^2-1より、 n(n+2)は奇数なので8の倍数になりえず矛盾。 ゆえにnは偶数である」 ですが、私は、 「n(n+2)が8の倍数ならばnは奇数であると仮定すると、 n(n+2)=8k(kは整数)と表せるので、 n^2=2(4k-n)となり、n^2は偶数だから、 nが奇数ならばn^2も奇数なので矛盾。 ゆえにnは偶数である」 と解いたのですが、これは解答として成立しますか? 違うのであれば具体的にどこが違うのかもお願いします。

  • 証明

    m,nが奇数のとき、(m^2)-(n^2) は8で割り切れることを証明するには m=2α+1 n=2β+1 (α、βは整数とおくと) (m^2)-(n^2)=(m+n)(m-n) m+n=2(α+β+1) m-n=2(α-β) (m^2)-(n^2)=4(α+β+1)(α-β) までは考えたのですが そのあと、 (1)αが奇数,βが奇数⇒α+β+1が奇数,α-βが偶数   (2)αが奇数,βが偶数⇒α+β+1が偶数,α-βが奇数   (3)αが偶数,βが奇数⇒α+β+1が偶数,α-βが奇数   (4)αが偶数,βが偶数⇒α+β+1が奇数,α-βが偶数 となり,(α+β+1)(α-β)は偶数です. よって、8の倍数といえる これでも合ってますか? 以前、回答がこなかったのでもういちどおねがいします

  • 証明方法の違い

    こんにちは。 毎度利用させて貰っている進学ナビの回答者の皆様に厚く感謝の意を示したく存じます。 今回は「証明方法」の違いということになりますが、恐らくとても単純であり、「悩むところじゃないよ」などといわれてしまうかもしれませんが、やはりもやもやを解消させたくて、質問するにいたりました。質問内容は以下の通りでございます。 質問:nを整数とし、S=(n-1)^3+n^3+(n+1)^3とする。(Sが偶数の時、nは偶数であることは証明済みであるとして)Sが偶数の時、Sは36で割り切れることを示せ。 <自身の考え> 「Sは36で割り切れる」の証明⇔「Sは4で割り切れ、且つ9でも割り切れる」の証明へ置き換えます。 ここで S=3n(n^2+2)となり、Sが偶数の時nも偶数から、3n=偶数、(n^2+2)=偶数 なので、少なくともSは4で割り切れることがわかりました。 そして最後にSは9で割り切れることを証明すればよいのですが、ここからが質問です。(前置きが長くてすみません。) 解答には n=3k、3k+1、3k+2(kは整数)で場合わけが行われておりましたが良くわかりません。これではn=偶数とすでに証明されているのに、n=3などの奇数の場合も考えてしまうことになります。確かにn=6のときは偶数へとなりますが・・・。 またなぜn=3k、3k+1、3k+2なのでしょうか。全体の数字を表すのには n=3k-2、n=3k-1、n=3kとしたほうが全体の数字に及びます。解答どおりだとn=3kからですからn=1、2と時は考慮できなくなってしまい・・・。 する必要がないのか・・・・(混乱中)。 それにnは偶数だとわかっているのでn=2kでもいいはずです。しかし、そうすると確かにS=24k^3+12kとなり、9でくくれません。n=2kとしないのは9で割り切れる証明に困るから、というだけで、実質ありなのですか? 質問がぐちゃぐちゃですいません。 まさに今の自分の頭の中でございます。 お時間の許す限り、お願いします!

  • 因数分解の証明

    m,nが奇数のとき、(m^2)-(n^2) は8で割り切れることを証明するには m=2α+1 n=2β+1 (α、βは整数とおくと) (m^2)-(n^2)=(m+n)(m-n) m+n=2(α+β+1) m-n=2(α-β) (m^2)-(n^2)=4(α+β+1)(α-β) までは考えたのですが α、βが奇数のとき 例えばα=3,β=1のとき 40になります α、βが偶数のとき 例えば、α=4、β=2のとき 48になって 8の倍数ということが証明できるで合ってますか?

  • この証明は間違いですか・・・?

    【問】 次の命題を証明せよ。 整数aについて、a^2が奇数ならばaは奇数である。 模試でこれを解いたのですが、不正解になりました。 模範解答は別の証明の仕方だったので、どこが間違っているのかわかりません。教えてください。 aが偶数であると仮定する。すると、aは自然数nを使って、 a=2nと表せる。 a^2=(2n)^2だから、 a^2=4a^2 a^2=2(2a^2)となり、a^2は奇数であると言うことに矛盾する。 よってa^2が奇数ならばaは奇数である。 と書いたのですが・・・

  • 偶数と奇数の和は奇数になることを説明しなさい

    中2の数学の問題です。 問題: 偶数と奇数の和は奇数になることを説明しなさい。 問題集の解答で疑問に思う点がありましたので質問させていただきます。 解答: m,nを自然数とすると偶数は2m、奇数は2n-1と表せる。 2数の和は、 2m+2n-1=2(m+n)-1 m+nは自然数だから2(m+n)は偶数になり、2(m+n)-1は奇数になる。 よって偶数と奇数の和は奇数である。 (証明終わり) 上記証明でわからない点が2点あります。 (1)m,nをなぜ自然数に限定しているのか。 m,nは一般に整数ではないのでしょうか?中学レベルではマイナスの数も 偶数、奇数が定義できると思うので、私はこのm,nは整数と置くのが正しい 答え方だと思うのですが、いかがでしょうか? (2)もしm,nが自然数と置くのが正しいとしたとき、奇数を2n+3とおいてしまうと 3(n=1)から始まる奇数になり一般に自然数全体で証明したことにならないの ではないかという疑問があります。 2m+2n+3=2(m+n+1)+1 このような解答も見かけます。 文字式の計算上は奇数といえますが、nが自然数で奇数を2n+3とおいても 問題ないのでしょうか?  ご回答よろしくお願いします。   

  • 論証 証明の仕方

    命題 m+n,mnが共に偶数ならばm,nは共に偶数である が真であることの証明法を質問します。 逆の命題はm=2k,n=2l(k,lはともに整数)とおいてm+n=2(k+l),mn=2×2klで証明終でしたが,上記のも直接証明できませんか?(lは小文字のエル) 対偶で m,nの少なくとも片方が奇数ならばm+n,mnの少なくとも片方は奇数である は 1)mが偶数m=2k,nが奇数k=2l-1(mnは偶数だがm+nは2k+2l-1となるので奇数) 2)m,n共に奇数 m=2k-1,l=2l-1(m+nは偶数だがmnは4kl-2k-2l+1となるので奇数) 3)mが奇数m=2k-1,nが偶数n=2l(1)と同様) としてそれぞれm+n,mnを示せばよいのでしょうが,そうではない方法でお願いします。 m+n=2k,mn=2lとおいてnを消去したらmの2次式となってしまい,解の公式で解いたら m=l±√ となり,偶数であることを示せませんでした。

  • 中央値の大小関係について

    中央値の大小関係について n個のデータがあるとき、データの中央値 m を以下のように定義します。 中央値= 小さい方から (n+1)/2 個目のデータ 〔nは奇数〕   小さい方から n/2 個目のデータと n/2+1 個目のデータの平均 〔nは偶数〕 次にn個のデータを n1個とn2個のデータに分割(n1+n2=n)し、 n1個のデータの中央値を m1 n2個のデータの中央値を m2 とします。 このとき、  m1<m かつ m2<m となることは有り得るのでしょうか? 某プログラム言語を使ってデータ分析をしていたところ上記のような結果が発生しました。 直感的にはないと思うのですが。プログラムミスでしょうか?よろしくお願いします。

  • 背理法について

    次の命題を考えます n^2が偶数⇒nは偶数 「これを証明するために背理法を用いてこの命題の否定であるn^2が偶数∧nは奇数が真であると仮定して、 矛盾を導く。 今、nは奇数なのであるkが存在して2k+1と表せる。(2k+1)^2=2(2k^2+2k)+1より、n^2は奇数。 よってn^2が偶数∧nは奇数のn^2が偶数という条件と矛盾。 よって命題はただしい。(方針はこれでお願いします)」 ここで、n=2のとき、上同様に証明してみるとおかしなことに命題の否定が真になってしまいます。 2^2が偶数⇒2は偶数を証明するためにこの命題の否定である2^2が偶数∧2は奇数が真であると仮定して、2が奇数なので2^2=4より偶数よって2^2が偶数∧2は奇数はしんになり、2^2が偶数⇒2は偶数は偽になる(?) これはどこがいけないのでしょうか。 一般のnが証明できたからn=2の時も成り立つのではないのでしょうか。 よろしくお願いします。

  • 証明

    m,nが整数のとき、次の命題を背理法を用いて証明せよ。 (1)mnが偶数ならば、m、nのうち少なくとも一つは偶数である。 (2)m^2+n^2が偶数ならば、m+nは偶数である。 背理法の使い方がよくわかっていません。どのような流れで証明すればよいのか教えてください。 よろしくお願いします。