• ベストアンサー
  • 困ってます

証明

m,nが整数のとき、次の命題を背理法を用いて証明せよ。 (1)mnが偶数ならば、m、nのうち少なくとも一つは偶数である。 (2)m^2+n^2が偶数ならば、m+nは偶数である。 背理法の使い方がよくわかっていません。どのような流れで証明すればよいのか教えてください。 よろしくお願いします。

noname#179974
noname#179974

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • asuncion
  • ベストアンサー率33% (1908/5773)

証明したい結論を否定して議論を進めたとき、前提となる条件と 矛盾が生じることで、証明したい結論が真であることを示します。 設問1 m, nがともに奇数であるとする。このとき、 m = 2a + 1, n = 2b + 1と表わすことができる。 mn = (2a + 1)(2b + 1) = 4ab + 2(a + b) + 1 = 2(2ab + a + b) + 1 ここで、2(2ab + a + b)の部分は「2×何とか」の形をしているから 明らかに偶数である。よって、mnは奇数である。 これは、前提である「mnは偶数である」と矛盾する。 よって、mnが偶数ならば、m, nのうち少なくとも一方は偶数である。 設問2 m+nが奇数であるとする。2数の和が奇数であるから、 一方が偶数、他は奇数である。mが偶数、nが奇数であるとしても 題意を失わない。 m = 2a, n = 2b + 1とおく。 m^2 + n^2 = 4a^2 + 4b^2 + 4b + 1 = 2(2a^2 + 2b^2 + 2b) + 1 ここで、2(2a^2 + 2b^2 + 2b)の部分は「2×何とか」の形をしているから 明らかに偶数である。よって、m^2 + n^2は奇数である。 これは、前提である「m^2 + n^2は偶数である」と矛盾する。 よって、m^2 + n^2が偶数ならば、m + nは偶数である。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

丁寧な回答、ありがとうございました!!

関連するQ&A

  • 論証 証明の仕方

    命題 m+n,mnが共に偶数ならばm,nは共に偶数である が真であることの証明法を質問します。 逆の命題はm=2k,n=2l(k,lはともに整数)とおいてm+n=2(k+l),mn=2×2klで証明終でしたが,上記のも直接証明できませんか?(lは小文字のエル) 対偶で m,nの少なくとも片方が奇数ならばm+n,mnの少なくとも片方は奇数である は 1)mが偶数m=2k,nが奇数k=2l-1(mnは偶数だがm+nは2k+2l-1となるので奇数) 2)m,n共に奇数 m=2k-1,l=2l-1(m+nは偶数だがmnは4kl-2k-2l+1となるので奇数) 3)mが奇数m=2k-1,nが偶数n=2l(1)と同様) としてそれぞれm+n,mnを示せばよいのでしょうが,そうではない方法でお願いします。 m+n=2k,mn=2lとおいてnを消去したらmの2次式となってしまい,解の公式で解いたら m=l±√ となり,偶数であることを示せませんでした。

  • 宿題が分からないので教えて下さい(;_;)

    a、bは実数とする。対偶を利用して次の命題を証明せよ。 (1) a+b=>a≦2またはb≦3 (2) a+b≠4またはa-b≠2=>a≠3またはb≠1 M、Nは整数とする。対偶を利用して、次の命題を証明せよ。 M^2+N^2は奇数=>MNは偶数 お願いします。

  • 倍数の証明問題

    m、nを1より大きい異なる整数とする時、m^3*n-m*n^3は6の倍数であることを証明せよ. m^3*n-m*n^3 =mn(m+n)(m-n) 6の倍数なので、三つの連続する整数であることを使うのかと思ったのですが、ちょっと出来そうにありません。 この問題はどうやって証明するのでしょうか? よろしくお願いしますm(__)m

  • 因数分解の証明

    m,nが奇数のとき、(m^2)-(n^2) は8で割り切れることを証明するには m=2α+1 n=2β+1 (α、βは整数とおくと) (m^2)-(n^2)=(m+n)(m-n) m+n=2(α+β+1) m-n=2(α-β) (m^2)-(n^2)=4(α+β+1)(α-β) までは考えたのですが α、βが奇数のとき 例えばα=3,β=1のとき 40になります α、βが偶数のとき 例えば、α=4、β=2のとき 48になって 8の倍数ということが証明できるで合ってますか?

  • 命題の証明で・・・

    mnが奇数ならば、m、nはともに奇数である という命題の対偶は mまたはnが偶数ならば、mnは偶数である というのは合ってますか? また、「mまたはnが偶数」というのと「m、nの少なく とも一方が偶数」というのはどう違うのでしょうか?

  • 対偶を示して証明する背理法について

    対偶証明法も背理法の一種と考えることが出来る。 という考え方があるのですが それで、その理由について 「命題「pならばq」を証明する過程で、「¬qならば¬p」が証明できたとする。 命題を背理法で証明するために「pならばq」を否定して「pかつ¬q」。 証明されている「¬qならば¬p」はpではないので 「pかつ¬p」となり矛盾。 背理法が成立して「pならばq」は真となる。 対偶法なら 「命題「pならばq」を証明する過程で、「¬qならば¬p」が証明できたとする。」の段階で自動的に命題が真といっていい。」 という説明があるのですが 自分は 対偶証明法は 対偶を示して証明する形式の背理法と 「対偶を示して証明する」という流れが同じなので 対偶証明法も 見方によって 「対偶を示して証明する形式の背理法」と考える事が出来るので そういう意味で 「対偶証明法も背理法の一種と考えることが出来る」 ということになる、と 理解したのですが この考え方は間違っているのでしょうか?

  • この証明は間違いですか・・・?

    【問】 次の命題を証明せよ。 整数aについて、a^2が奇数ならばaは奇数である。 模試でこれを解いたのですが、不正解になりました。 模範解答は別の証明の仕方だったので、どこが間違っているのかわかりません。教えてください。 aが偶数であると仮定する。すると、aは自然数nを使って、 a=2nと表せる。 a^2=(2n)^2だから、 a^2=4a^2 a^2=2(2a^2)となり、a^2は奇数であると言うことに矛盾する。 よってa^2が奇数ならばaは奇数である。 と書いたのですが・・・

  • 背理法について

    次の命題を考えます n^2が偶数⇒nは偶数 「これを証明するために背理法を用いてこの命題の否定であるn^2が偶数∧nは奇数が真であると仮定して、 矛盾を導く。 今、nは奇数なのであるkが存在して2k+1と表せる。(2k+1)^2=2(2k^2+2k)+1より、n^2は奇数。 よってn^2が偶数∧nは奇数のn^2が偶数という条件と矛盾。 よって命題はただしい。(方針はこれでお願いします)」 ここで、n=2のとき、上同様に証明してみるとおかしなことに命題の否定が真になってしまいます。 2^2が偶数⇒2は偶数を証明するためにこの命題の否定である2^2が偶数∧2は奇数が真であると仮定して、2が奇数なので2^2=4より偶数よって2^2が偶数∧2は奇数はしんになり、2^2が偶数⇒2は偶数は偽になる(?) これはどこがいけないのでしょうか。 一般のnが証明できたからn=2の時も成り立つのではないのでしょうか。 よろしくお願いします。

  • 証明

    m,nが奇数のとき、(m^2)-(n^2) は8で割り切れることを証明するには m=2α+1 n=2β+1 (α、βは整数とおくと) (m^2)-(n^2)=(m+n)(m-n) m+n=2(α+β+1) m-n=2(α-β) (m^2)-(n^2)=4(α+β+1)(α-β) までは考えたのですが そのあと、 (1)αが奇数,βが奇数⇒α+β+1が奇数,α-βが偶数   (2)αが奇数,βが偶数⇒α+β+1が偶数,α-βが奇数   (3)αが偶数,βが奇数⇒α+β+1が偶数,α-βが奇数   (4)αが偶数,βが偶数⇒α+β+1が奇数,α-βが偶数 となり,(α+β+1)(α-β)は偶数です. よって、8の倍数といえる これでも合ってますか? 以前、回答がこなかったのでもういちどおねがいします

  • 背理法

    問題 背理法を用いて、次の命題が真であることを示す。 命題:”√3は無理数である” ここで、背理法による証明はP→q や qであるが真であることをいうためにはまず ̄q(qではない)と仮定して矛盾を示すのでこの問題では、 √3は有理数であることを仮定しますが、 ここで有理数ということなので、整数、分数と改定しますが、なぜ既約分数で表すのでしょうか? 有理数は整数でもよいので 例えば、3やー4でもよいのでは? そこのところを教えてください。 疑問です。