• ベストアンサー
  • すぐに回答を!

一階微分方程式

この微分方程式の解き方がわかりません。どなたかわかる人がいらしたら、教えてください。 Mdv(t)/dt=-ζv(t)+a*sin(ωt) 初速度をv(0)とおくと、この線形微分方程式の解は、 v(t)=(v(0)+(aω/M)/(ω^2+(ζ/M)^2)exp(-ζt/M)+(a/M)sin(ωt-δ)/√(ω^2+(ζ/M)^2) 公式どおり計算てみましたが、部分積分のところが上手に出来ません。その部分積分は、 v(t)=exp(-ζt/M)[a/M∫exp(ζt/M)*sin(ωt)dt+v(0)] のインテグラルの部分です。

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数130
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.2

#1です。sin、cosのωが落ちてました。 I=(1/α)*exp(αt)*sin(ωt)-(ω/α)*∫exp(αt)*cos(ωt)dt =(1/α)*exp(αt)*sin(ωt)  -(ω/α)*{(1/α)*exp(αt)*cos(ωt)+(ω/α)*∫exp(αt)*sin(ωt)dt} =(1/α)*exp(αt)*sin(ωt)  -(ω/α^2)*exp(αt)*cos(ωt)-(ω^2/α^2)*∫exp(αt)*sin(ωt)dt =(1/α)*exp(αt)*sin(ωt)  -(ω/α^2)*exp(αt)*cos(ωt)-(ω^2/α^2)*I

共感・感謝の気持ちを伝えよう!

その他の回答 (1)

  • 回答No.1

I=∫exp(αt)*sin(ωt)dtと置いて部分積分を2回実行します。 I=(1/α)*exp(αt)*sin(ωt)-(1/α)*∫exp(αt)*cos(ωt)dt =(1/α)*exp(αt)*sin(ωt)  -(1/α)*{(1/α)*exp(αt)*cos(ωt)+(1/α)*∫exp(αt)*sin(ωt)dt} =(1/α)*exp(αt)*sin(ωt)  -(1/α^2)*exp(αt)*cos(ωt)-(1/α^2)*∫exp(αt)*sin(ωt)dt =(1/α)*exp(αt)*sin(ωt)  -(1/α^2)*exp(αt)*cos(ωt)-(1/α^2)*I 両辺に現れたIについて解けば∫exp(αt)*sin(ωt)dtが出ます。 sinとcosのパートを合成すれば片付くように見えますが参考になりますか?

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 未定係数法は一階の線形微分方程式にも使えるのでしょうか? 

    未定係数法は一階の線形微分方程式にも使えるのでしょうか? 一階の線形微分方程式の解き方は dy/dt + p(t)y = g(t) のとき e^∫p(t)dt を両辺にかけて そのあとで両辺を積分してyについて解く と習いました。 そして、未定係数法は2階の線形微分方程式を解く方法の一つとして、 習いました。 ここで疑問に思ったのが、 この未定係数法は一階の線形微分方程式にも使えるのでしょうか? だとしたら下のような手順でよいのでしょうか? 同次式: dy/dt + p(t)y = 0 の一般解を求める (積分定数が残る) 非同次式: dy/dt + p(t)y = g(t) の特殊解を求める (積分定数はない) yの一般解 = 同次式の一般解 + 特殊解 よろしくお願いします。

  • 微分方程式と積分

    1.次の微分方程式を解け。 (1)y''+2y'+y=3sin2x 同次微分方程式の一般解はu(x)=(C₁+C₂x)exp(-x) と求められるのですが、非同次微分方程式の特殊解u₀(x)が求められません。 どうやって求めればいいのでしょうか。 (2)y''-5y'+6y=x(exp(x)) 非同次微分方程式の特殊解u₀(x)はどうやって求めたらいいのでしょうか。 2.置換積分によって、次の定積分を求めよ。 1.∫[0→π/2] 1/(1+cosx)dx tanx/2=tと置いた後、どうすればいいのでしょうか。 2.∫[0→a] x^2(√a^2-x^2)dx(a>0) x=asintとおくと、dx=acost dt .∫[0→a] x^2(√a^2-x^2)dx=∫[0→π/2] a^2sin^2t*acos^2t dt このあとどうすればいいのでしょうか。 お願いします。

  • 一階線形非同次微分方程式について(積分ができない)

    表題についてy'+y=cosxを一階線形非同次微分方程式として解きたいのですが、公式に当てはめるとy=e^(-y)(∫e^(y)cosxdx+c) となり、積分を展開しようと部分積分をしてもsin→cosとずっとループしてしまいます。この場合どのように計算すればいいのでしょうか。 よろしくお願いいたします。

  • 微分方程式

    dx/dt=a^2-x^2 (aは実数の定数) (1)この微分方程式は1階の線形同次・線形非同次・非線形のどれにあてはまるか。 (2)この微分方程式の一般解を変数分離法で求めよ。 考えたことは(1)は非線形だと思いますが、合っていますか? (2)はdx/(x^2-a^2)=-dtと変形し、両辺積分します。  すると、1/(2a)log(|x-a|/|x+a|) = -t + C このあとx=が分からないです。 教えてください。お願いします

  • 微分回路における微分方程式の解

    微分回路では入力、出力電圧をそれぞれVi、Voとすると dVo/dt + Vo/RC = dVi/dt    (1) という微分方程式が成り立ちます。これを解くと Vo = Vi×exp(-t/RC) になるらしいのですが、(1)の微分方程式を解くことができません。 積分回路の微分方程式 dVo/dt + Vo/RC = Vi/RC は変数分離によって Vo = Vi(1 - exp(-t/RC)) という解が求まったのですが。 (1)の微分方程式の解き方を教えてください。よろしくお願いします。

  • 定数係数でない2階微分方程式

    (x + 1) y'' + x y' - y = 0 という方程式を以下の手順により解け (1) y = u exp(- x)がこの微分方程式の解になるためにyがみたすべき微分方程式を求めよ。 この(1)で(x + 1) u'' - (x + 2) u' = 0 という微分方程式が出てきます。 (2) 前問で求めた微分方程式を解け ということで (x + 1) u'' - (x + 2) u' = 0という微分方程式を解くのですが これの解き方がわかりません。 積分すればいいのかと思ったのですが 2項目の積分をどうしていいかわからずに結局解けませんでした。 どうやってとけばいいか教えてください。

  • 微分方程式

    問題を解いていて少し疑問に思ったので質問させてください。 u=u(t)を未知関数として A(du/dt) + B*u = E*sin(ωt) について、一般解を求め、その後初期条件u(0)=u0のもとで解け。 ただし、A,B,E,ωは正定数とする。 上記のような問題なんですけど、これは一階微分方程式ですよね? 一般解は、二階微分方程式では特性方程式によって求めた基本解と、未定係数法で求めた特殊解を重ね合わせて作るという印象があります。 このような一階微分方程式の場合はどのように解けばいいですか? 二階の時と同じように解いてよいならば、特性方程式の解から基本解を作る時など、二階微分方程式の時と同じようにやってよいものか疑問です。 特殊解も未定係数法もつかってよいのでしょうか。 詳しい方いましたら教えてください。

  • 微分方程式の問題(4問)がわからないので教えていた

    微分方程式の問題(4問)がわからないので教えていただきたいです。できれば途中式、解説などもお願いいたします 【1】、【2】微分方程式の一般解を求めよ 【1】 dy/dx+(x-2)/y=0 【2】 dy/dx+1/x*y(x)=e^2x 【3】、【4】微分方程式を求めよ 【3】 d^2y/dt^2 + dy/dt - 2y(t) = sin t 【y(0)=0、 y'(0)=0】 【4】 dq(t)/dt + q(t)/RC = sin 2t 【q(0)=0】

  • 微分方程式2

    L*(dI/dt) + RI = Eo sinωt (L,R,Eo,ω は定数) の変形がうまくできません。1階線形微分方程式としてアドバイスをおねがいします。

  • 微分方程式

    微分方程式 dy/dx+ay=cosx を初期条件 x=0のとき、y=0 のもとで解け。ただし、aは正の定数とする。 という問題です。 1階線形微分方程式y'+P(x)y=Q(x)の解法で解けばいいのかなと思い、 解いていきました。 P(x)=aなので、 e^(∫P(x)dx)=e^(∫adx)=e^(ax) これを問題の両辺に掛けると、 e^(ax)y'+e^(ax)ay=e^(ax)cosx (e^(ax)y)'=e^(ax)cosx e^(ax)y=∫e^(ax)cosxdx となりました。 で、∫e^(ax)cosxdxの解き方がよく分かりません。 置換積分法と部分積分法を試したのですが、ダメでした。 そもそもこの解き方であっているのかもあまり自信がありません。 この問題の解き方、または∫e^(ax)cosxdxの解き方を教えて下さい。 ちなみに、指数の部分は()でくくられているところで、cosxやyは指数ではありません。 どなたかヨロシクお願いします。。。