• ベストアンサー

自然数の構成

tmppassengerの回答

回答No.1

このままでは質問に答えるのが難しい。というのが、あなたが考えている疑問の内容をまずはっきりさせないといけない。 先ず、 > 自然数Nとしてf(n)=n+1とすれば とかいてあるが、 * 先ずここで「N」というのは「ペアノ公理をみたす集合」であって、「自然数」ではない。「自然数」というのは「ペアノ公理をみたす集合」の『元』であって(と書いてありますね)、「ペアノ公理をみたす集合」そのものではない。 で、どういう流れかというと、ペアノの公理を満たすとある集合Nがあったとする。この段階で加法は定義されてない。その後で ◯ 一般に空でない任意の集合XからXへの写像gがあったとき、Xの任意の元aに対し、NからXへの集合 h で、次のものを満たすものが一意に存在することが言える: * h(0) = a * n∈Nに対し、h(f(n)) = g(f(n)) つまり、写像の「帰納的定義」が出来ることが証明出来る。 ◯ そこで、任意のm∈Nに対し、A[m]: N→Nを、A[m](0) = m, A[m](f(n)) = f(A[m](n)) で定義出来る。よって、A: N×N→Nを、A(m,n) = A[m](n)と定義し、A(m,n) = m+nと略記すれば、これが我々のよく知る加法であることが証明出来る。 ※ 「これが我々のよく知る加法であることが証明出来る」、の意味は、これで定義した加法が、我々のよく知る可換律とか結合律とかを満たす事が証明出来る、ということ。全部ちまちま証明しないといけない。 加法が最初からあるのではなく、あくまで「ペアノの公理を満たすとある集合」の存在があって、その上で我々の知る加法が定義出来ることに注意。 ◯ で、上で定義された加法では、m+1 = A(m,1) = A[m](0) = A[m](f(0)) = f(A[m](0)) = f(m)、つまりm+1 = f(m)となっている。 なので、「自然数Nとしてf(n)=n+1とすれば」というのは、 * N自身は自然数ではない * f(n)=n+1とすれば、というのは、加法はPeanoの公理を満たすfがあって、それを用いて定義するもの、なので順序が逆 です。ここまではいいですか?

関連するQ&A

  • 有理数もペアノの公理を満たす?

    ペアノの公理を満たすものを自然数と言うそうですが、 私は可算無限集合ならペアノの公理を満たすと思います。 そうすると、有理数も可算無限集合なので、 有理数は自然数となってしまいます。 有理数は自然数でないので、 ペアノの公理を満たさない筈ですが、 ペアノの公理を満たさないと何故言えるのか分かりません。 何方か教えていただけないでしょうか? 私の言っているペアノの公理は、  集合N,N の元e,写像φ : N → N が、   (1) φ は単射である   (2) φ(N) ⊂ N\{e}   (3) M ⊂ N ∧ e ∈ M ∧ φ(M) ⊂ M ⇒ M = N です。 (1)と(2)を満たす写像φを定義でき、 ∃e ∈ N;φ(N) = N\{e}である。 と解釈しています。

  • なぜ小数は自然数ではないのでしょうか?

    なぜ小数は自然数ではないのでしょうか?自然数はペアノの公理で定義されていると聞きました。 そして、ペアノの公理を見る限りでは小数が自然数に含まれてはならない根拠がないように思えました。なぜ小数は自然数とはいえないのでしょうか? 自然数aの後続数をa'とすると、a'=a+1とでも定義されているのでしょうか? (でもペアノの公理では任意の自然数aの後続数a'が存在するとしかいってないような・・・)

  • 自然数の定義はこれで正しい?

    自然数の定義を知りたく思っております。 Peanoの公理というものを見つけました。いちいちよく分かりませんでしたが 集合A(≠φ)に対し, {f:写像 ; 「fは単射」,且つ,「f(A)\Aの元はただ一つでそれをeで表す」,且つ,「{S(⊂A) ; e∈S,f(S)⊂S}={A}}≠φ の時、Aを(fとeに関しての)自然数の集合といい、Aの元を自然数という。 言い換えれば、 集合A(≠φ)に対し, (i) fは単射 (ii) f(A)\Aの元はただ一つでそれをeで表す (iii) {S(⊂A) ; e∈S,f(S)⊂S}={A} なる写像fが採れる時、Aを(fとeに関しての)自然数の集合といい、Aの元を自然数という。 このようなAは複数(無数)取れるが構造(体系?)が同じものを同一視すればこのような集合はただ一つしか存在しない。 この時、Aを(ゴシック体の)Nで表す。 と自分なりに解釈したのですが正しいでしょうか?

  • 自然数が等間隔に並ぶことを証明できるでしょうか?

    1.ペアノの公理で数字が0を最初にして順番に並んでることが定義できて 2.加法を定義してsuc(a)がa+1ということにしたけれども。 1.任意の自然数 a にはその後者 (successor)、suc(a) が存在する=順番がある  のはわかった 2.けれども並んだ自然数それぞれの間隔がみんなおんなじだって 加法で定義できるのでしょうか? 1.ジャガイモが3個あったとして(任意の自然数 a にはその後者 (successor)、suc(a) が存在する) 2.3個のジャガイモは区別できてそれぞれ重さが違う(等間隔じゃない) とおもうんです。 1を足すと次の自然数と決めちゃうと 数直線上の自然数も等間隔だし図形もかけるから便利なんです。 1と2の間の長さと2と3の間っておんなじなんでしょうか? そういうふうに単位が1と決めたのでそうなんです。 でも、大きなジャガイモ(大きな1)や小さなジャガイモ(小さな1)があるような気がするんです。 対数グラフと普通のグラフの対応がヒントになりそうなんですが。  

  • 奇素数に自然数の番号を付与することについて.

    奇素数に自然数の番号を付与することについて. 奇素数 3,5,7,11,13,17,・・・・・ に対して, 順番に 1,2,3, 4, 5, 6,・・・・・ と番号を以下のように付けます. 奇素数 3   5  7  11  13  17 ・・・・・     ↑  ↑  ↑  ↑  ↑  ↑   番号 1   2  3   4   5   6 ・・・・・ 念のため,タテに書きますと, 奇素数  番号 ↓    ↓  3 ← 1  5 ← 2  7 ← 3 11 ← 4 13 ← 5 17 ← 6 ・・・・・・ p ← m ・・・・・・ こうすると,任意の奇素数 p には m という自然数が対応し,かつ, 任意の自然数 n には,奇素数 q が必ず対応します.すると, 奇素数の集合P={ 3,5,7,11,13,17 ・・・ } と 自然数の集合N={ 1,2,3,4,5,6 ・・・ } は, 1対1の対応がとれ,全単射となる写像が存在することになります. ここで,質問ですが,上記のような対応に対する数学的な理論が何か,ありますか? ピエール・デザルト (Pierre Dusart) の研究結果として, p(n)をn番目の素数とすると n ≧ 6 に対して,  n・ln(n) + n・ln{ln(n)} -n <p(n)<n・ln(n) + n・ln{ln(n)} が成り立つ.というものがありますが, これ以外に,何かあれば教えて下さい.

  • Q.Xを自然数全体の集合Nの部分集合とするとき、|X|>アレフゼロを証

    Q.Xを自然数全体の集合Nの部分集合とするとき、|X|>アレフゼロを証明せよ。 以下、ネットでのどなたかの回答を参考に、私なりにテキストを読み返すなどして解釈して、作成しました。 テスト問題としての解答として、 「修正および補足」などをお願いします。 A. |X|=|N|と仮定すると、NからXへの全単射fが存在する。 ∀n∈N ⇒ f(n)=M, ∃M∈X ∀M∈X ⇒ f(n)=M, ∃n∈N つまり 1 ←→ M1 2 ←→ M2 ・ ・ n ←→ Mn ・ ・ このとき、左右の対応関係について、属するか属さないかを分類でき、 N∈Mn または n?Mnとなる。 次に集合M'を以下のように定義する。 (1) n∈Mnのときnを要素としない。 (2) n?Mnのときnを要素とする。 この集合は一意に決まり、また自然数だけを要素に持つ集合となり、明らかに自然数の部分集合を意味する。 つまりM'∈Xであるが、このM'は定義により、上の対応関係からは外れている。 これはNとXとが全単射できたという仮定に矛盾する。 |X|≠アレフゼロ また、写像g:N→Xをgn={n}とすると、これは単射であるから |N|=アレフゼロ≦|X| 以上より、アレフゼロ<|X|

  • 自然数と小数を1対1対応で対角線論法し無矛盾したい

    自然数と有理数(循環小数)を1対1対応をつけて、対角線論法して無矛盾したいです。 自然数を1から始めることにします。 斜めに拾った数字で数を作ります。 有理数は循環小数なので、0.1010101・・・を0⇔1変換すると 0.0101010・・・になるのでは?が基本アイデアです。 自然数と有理数(循環小数)の一部を2進数表記にして 対応付けを作ります。 リスト1 1:11/12 =0.916666666・・・は2進数表記で  0.1110101010101… 2:8 /12 =0.666666666・・・は2進数表記で  0.1010101010101… 3:11/48 =0.229166666・・・は2進数表記で  0.0011101010101… 4:8 /48 =0.166666666・・・は2進数表記で  0.0010101010101… 5:11/192=0.057291666・・・は2進数表記で  0.0000111010101… 6:8 /192=0.416666666・・・は2進数表記で  0.0000101010101… 7:11/768=0.014322916・・・は2進数表記で  0.0000001110101… 8:8 /768=0.010416666・・・は2進数表記で  0.0000001010101… . n:11/3*2^(n+1){nは奇数}は2進数表記で 0.(0がn-1個続いて)11101010101… n:8 /3*2^(n ){nは偶数}は2進数表記で 0.(0がn-2個続いて)10101010101… . . 1つ目の有理数(循環小数)の小数1桁目を0⇔1反転し、 nつ目の有理数のn桁目を0⇔1反転して 対角線論法で作った2進数は0.010101010101…です。 でもリスト1に数がないです。 2つ目と3つ目の間に0.0101010101010…を入れると、 対角線論法で作った2進数が変わってしまい、うまくいきませんでした。 しょうがないので一桁づらしてリスト2を作ります。 リスト2 1:11/24 =0.4583333333・・・は2進数表記で  0.0111010101010… 2:8 /24 =0.3333333333・・・は2進数表記で  0.0101010101010… 3:11/96 =0.1145833333・・・は2進数表記で  0.0001110101010… 4:8 /96 =0.0833333333・・・は2進数表記で  0.0001010101010… 5:11/384 =0.0286458333・・・は2進数表記で  0.0000011101010… 6:8 /384 =0.0208333333・・・は2進数表記で  0.0000010101010… 7:11/1536=0.0071614583・・・は2進数表記で  0.0000000111010… 8:8 /1536=0.0052083333・・・は2進数表記で  0.0000000101010… . n:11/3*2^(n ){nは奇数}は2進数表記で 0.(0がn-1個続いて)01110101010… n:8 /3*2^(n+1){nは偶数}は2進数表記で 0.(0がn-2個続いて)01010101010… となって、リスト2の2つ目にリスト1から対角線論法で作った数が出てきます。 なんとなく自然数と有理数の一部が対応したような感じがします。 リスト1とリスト2個別にみれば 単調増加なので同じ有理数に、違う自然数が対応してるような 感じがします。 ・基本的に誤りでしょうか? ・リストが2つに分かれちゃいましたが1つにまとめられますか? ・有理数全体の有限小数でつまり、循環のパターン110とか001とか がたくさんあっても対角線論法で、無矛盾するためには どうすればよいでしょうか?

  • 自然数と偶数の一対一対応について

    自然数の中から小さい方から順番にn個取り出した集合をAとし、 正の偶数の中から小さい方から同様に、同じ数だけ取り出した集合をBとします (要は自然数と正の偶数の一対一対応です) A={1,2,3,4,5, ...n} B={2,4,6,8,10,...2n} (AとBは同じ数) ここで、あるnの時の"Aには存在しないBの要素(値)の数"を考えます n=1の時、1個 n=2の時、1個 n=3の時、2個 個数だけ上げていくと、 1,1,2,2,3,3,4,4,5,5,.....と続きます "Aには存在しないBの要素の数"は、nの数に対して単調増加しており、 全てのnにおいて、少なくとも1以上であるように見えます また、nが無限大になった時でも、"Aには存在しないBの要素の数"は1以上あるようにしか思えません nが無限の時、Aを自然数全体の集合、Bを正の偶数全体の集合と呼ぶとします。 nが無限の時でも、Aに含まれないBの要素が存在します。 言い換えれば、自然数(=A)ではない正の偶数が存在するということです。 (もしそうなら最大値の存在が示せそうな気がしますし、現時点で私はそれが正しいように思います) この考えで、どこか間違いがあれば教えてください

  • このような自然数は存在するのでしょうか?

    いま、n桁の自然数、Nがここにあるとします。そのNを一の位から順番を逆に並べなおした数をMとします。このとき、MがNの約数となるような自然数は存在するのでしょうか?(例えば、N=5431ならば、M=1345です。)無限に自然数はあるので、ひとつくらいはありそうな気もしますが、どうなのでしょうか? ただし、2000、1234321、1210000、22222のような明らかに条件を満たす数は除きます。

  • 実数と自然数は同じ個数なのではないでしょうか?

    すべての自然数とすべての実数を1対1で対応させる(すべての実数を一列に並べる)方法を考えました。間違いがあれば教えてください。 *方法1*「後出し」は実数の専売特許にあらず まず、すべての自然数と、異なる実数を無限に並べたもの、とを対応させるのだが、それは、異なる実数を無限に並べた「第一列」の「一番目」の実数を「1・1」とすると、 1→1・1 2→1・2 3→1・3 ・ ・ ・ と表すことができる。これはいわゆる「すべての自然数とすべての実数を1対1に対応させたと仮定したもの」であり、対角線論法によってこの表には存在しない実数を作れることから、仮定は間違い=「実数は自然数より多い」という結論になるのが従来の話である。しかしこれは、自然数を対応させる対象を「第一列」に限定したことによる間違った結論だ。 対角線上の数字のずらし方は、すべて一つずらす1111…の他に、1211…,1234…,2624…と無限にあるので、一つの対角線から、「第一列」には存在しない実数を無限に生み出すことができる。対角線論法によって生み出された無限の実数を並べた「第二列」に自然数を対応させることができなければ先の結論は正しいことになるが、そんなことは全然なく、「第二列」の「一番目」の実数を「2・1」とすると、 1→1・1 2→2・1 3→1・2 4→2・2 5→1・3 6→2・3 ・ ・ ・ のように、始めの、自然数と「第一列」の対応を解消した後、あらためて自然数を、「第一列」と「第二列」に、交互に対応させればいいだけの話なのだ。で、これは、「第一列」と「第二列」を合わせて「新たな第一列」にした(=始めの状態にリセットした)ということであり、この「新たな第一列=N1」の対角線から、対角線論法によって「新たな第二列=N2」が生まれるので、そしたらまたそれまでの対応を解消して 1→N1・1 2→N2・1 3→N1・2 4→N2・2 5→N1・3 6→N2・3 ・ ・ ・ と、自然数を「新たな第一列」と「新たな第二列」に交互に対応させ、これを無限に繰り返せばいいのである。自然数を、「新たな第二列」の実数に、無限に対応させ続けることができるということは、すなわち両者の個数は同じということなのである。 それにしても、無限に生み出される「新たな第一列」と「新たな第二列」は合わせて「新たな第一列」にできるのに、なぜ始めから一列に並べることができないのか。 方法1を別の言い方でまとめると、まず 1→1・1 2→1・2 3→1・3 ・ ・ ・ のように、すべての自然数と、異なる実数を無限に並べたもの、とを対応させるところから始めて、次に 1→1・1 2→  ←2・1 3→1・2 4→  ←2・2 5→1・3 6→  ←2・3 ・ ・ ・ と、「第二列」の実数を「第一列」に割り込ませて、始めの、すべての自然数と、異なる実数を無限に並べたもの、とを対応させた状態 1→1・1 2→2・1 3→1・2 4→2・2 5→1・3 6→2・3 ・ ・ ・ ↓ 1→1・1(1・1) 2→1・2(2・1) 3→1・3(1・2) 4→1・4(2・2) 5→1・5(1・3) 6→1・6(2・3) ・ ・ ・ にリセットして、そしたらまた 1→1・1 2→  ←2・1 3→1・2 4→  ←2・2 5→1・3 6→  ←2・3 ・ ・ ・ と、「第二列」の実数を「第一列」に割り込ませて…とこれを無限に繰り返す、といった具合に説明することができる。 *方法2*実数を整列させる 方法1は「動的な対応」とでも言うべきものであり、できれば「静的な対応」が望ましいわけで、そのためには実数を整列させる必要があるのだが、以下のようなやり方ではだめなのか。 まず 1→0.1 2→0.2 ・ ・ ・ 9→0.9 10→0.01 11→0.11 12→0.21 ・ ・ ・ 99→0.99 100→0.001 101→0.101 102→0.201 ・ ・ ・ 9999→0.9999 10000→0.00001 10001→0.10001 10002→0.20001 ・ ・ ・ …835218→0.812538… …835219→0.912538… …835220→0.022538… ・ ・ ・ というように、すべての自然数と、0と1の間のすべての実数を、1対1に対応させる。右側が「0と1の間のすべての実数」であることに異論はあるだろうか。この列に存在しない(0と1の間の)実数は存在するのか。この列は、小数第一位の数字が1,2…9,0,1…9,0,1…となっているので、だいたいその値で推移しながら、実数が、0と1の間を無限に埋めていく形になっている。 例えば、小数点以下、一恒河沙の一恒河沙乗番目が2、一阿僧祇の一阿僧祇乗番目が3、一那由他の一那由他乗番目が4の 0.1…2…3…4… のような無理数について、この並びの途中までのものしかないとしたら、ではどこまでのものならあるのか。0.1…2か、0.1…2…3か、0.1…2…3…4か。実際には「途中まで」などということはなく、つまりこの列にこの無理数は存在し、この任意の無理数が存在するなら(0と1の間の)すべての無理数が存在するのである。で、この表は左右が対称的になっているから、右に無限小数が存在するなら左には無限桁の自然数が存在するのである。 有限桁の自然数を重複することなく無限に並べることができないのと同様に、有限小数を、重複することなく無限に並べることはできない。この列は0と1の間の実数を整列させたものであり、この列に存在しない(0と1の間の)実数は存在しない。 で、すべての実数を整列させると 0,0.1,0.2…0.9,0.01,0.11,0.21… 1,1.1,1.2…1.9,1.01,1.11,1.21… 2,2.1,2.2…2.9,2.01,2.11,2.21… ・ ・ ・ (0),-0.1,-0.2…-0.9,-0.01,-0.11… -1,-1.1,-1.2…-1.9,-1.01,-1.11… -2,-2.1,-2.2…-2.9,-2.01,-2.11… ・ ・ ・ となるので、すべての自然数とすべての実数を1対1に対応させると、 1→0 2→0.1 3→-0.1 4→1 5→-1 6→2 7→-2 8→1.1 9→-1.1 10→0.2 11→-0.2 12→0.3 13→-0.3 14→1.2 15→-1.2 16→2.1 17→-2.1 18→3 19→-3 ・ ・ ・ のようになる。 ところでそれでも従来の考えが正しい場合、循環小数と非循環小数の個数に差が出る本質的な原因、両者の違いは何なのか。明確な違いは「整数比で表せるか表せられないか」だが、循環小数と非循環小数をそれぞれ循環数列と非循環数列に置き換え(今問題にしているのは個数であり、小数点を取り除いても個数は変わらない)れば整数比は関係なくなるわけだし。単なる数字の組み合わせに過ぎない同じ無限数列でありながら、循環させないというだけで個数が多くなるというのは何とも妙な話である。