• ベストアンサー

dpが距離にならないことについて

dp(x,y)=(Σ(i→n)|xi-yi|^p)^(1/p)について 0<p<1のときdpは距離では無いことを示せ。 この問題を教えて頂きたいです。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.3

全くそういう事です。

jgmdpt8463
質問者

お礼

ご丁寧にありがとうございました。

全文を見る
すると、全ての回答が全文表示されます。

その他の回答 (2)

回答No.2

あ、ごめんなさい。ちょっと記述が不足していましたね。 先に書いたx, yと原点の3点で、三角不等式が成立するか確認せよ。特に、d(x, 0) + d(y, 0) ≧ d(x, y)が成立しているか、確認せよ。

jgmdpt8463
質問者

補足

d(x, 0) + d(y, 0) =1+1=2 d(x, y)=(2)^(1/p) 0<p<1より1<1/pとなるので 2 < (2)^(1/p) よってd(x, 0) + d(y, 0) < d(x, y)となるのでdpは0<p<1のとき距離ではない。 これは正しいでしょうか?

全文を見る
すると、全ての回答が全文表示されます。
回答No.1

x = (1, 0, 0, ....., 0) y = (0, 1, 0, ...., 0)の時に三角不等式を満足するか確認せよ。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • この式の答えを教えてください

    この式のn・Xi・Yiにはどの数値が入るのか教えてください X1=1 X2=2 X3=3 Y1=2 Y2=3 Y3=4      n Z=n*∑(Xi)^2(Yi)^2      i=1

  • log が入った不等式の証明

     log( Σ(xi yi) ) ≧ Σ( xi log(yi) ) (i = 1, 2, ..., n、 xi, yi ∈[0, 1] かつ Σxi = 1, Σyi = 1 ) という不等式が成り立ちますが、証明はどうすれば良いのでしょうか? たとえば、「 log(x1 y1 + x2 y2) ≧ x1 log(y1) + x2 log(y2) 」を x1, y1 に、[0,1]の範囲でいろいろな数値を当てはめて電卓で計算すると、確かにかならず正になります。[0,1]を超えると成立しません。 左辺ー右辺 = log(x1 y1 + x2 y2) ー (x1 log(y1) + x2 log(y2)) をやろうとしたのですが、これ以上前に進めないんですよね。特に、i = 1,2, ..., n ですし。 よろしくお願いいたします。

  • 複素数の相等

    最後にもう一つ教えていただきたい問題があります。 (x+yi)(1-5i)=17+7i これのxyを求めるんですが x-5xi+1yi-5yi^2 x+(-5x+y)i+5y x+(+5y)+(-5x+y)i ここから連立方程式で解いていくのですが 計算がなぜか合いません。 やり方が変なのかもしれませんが、この問題を解説・回答できる方いましたらお願いします。

  • 統計学: 尤度推定量、最小二乗法

    統計学なのですが、悩んでいるところは 微分の極値問題 なので 微分ができる方にも アドバイスをお願いしたいです。 さて、問題ですが L = - Σ(i=1->n)(Yi - θ*Xi)^2/(2*σ^2) - (n/2)ln(2*π*σ^2) を最大化するθ,σ^2を求め、 そのθとσ^2がLを最大化していることを示せ。という問題です。  ただし X1,X2,...,Xn と Y1,Y2,...,Yn は定数扱い。 また θ>= 0 , n は自然数,σ^2 > 0 です。 もとは 統計学の問題で 線形回帰モデル  Yi = θ*Xi + εi ,εi は 正規分布 N(0,σ^2) に従う。 を考えたとき θとσ^2の最尤推定量を求め、その推定量が尤度を最大化していることを証明せよ。 という問題で (対数)尤度L を計算すると L = - Σ(i=1->n)(Yi - θ*Xi)^2/(2*σ^2) - (n/2)ln(2*π*σ^2) となり、 あとは極値問題を解くだけというところから 分からなりました。 この先、私が考えたのは ∂L/∂(σ^2) =0 かつ ∂L/∂θ =0 を満たす θ,σ^2 を求めること(grad(L)を導出) 前者は  σ^2 = Σ(Yi-θ*Xi)^2 /n 後者は  Σ(Yi-θ* Xi)*Xi = 0 という 形に変形できたのですが、 後者の式をこれ以上 くずせませんでした。 ここでアドバイスがほしいのです。 統計、もしくは解析ができる方、アドバイスをいただけないでしょうか。 文が長くなってしまいましたが、よろしくお願いします。

  • 2項分布に関する問題

    サイコロをN回投げたとき、確率変数Xiを、i回目に6の目が出れば1、その他の目ならば0とする。 またYi=X1+X2+・・・・+Xi(iは変数)とするとき、Y3の確率分布がY3~B(3、1/6)になる理由がいまいちピンときません・・・・。 YiはX1からスタートしているのになぜX0、成功回数が0回の値がYiに含まれて二項分布の形をとるのでしょうか? おそらく根本的になにかを勘違いしていると思うのですが、ご指導お願いします。

  • 線形代数 - 内積

    とある問題でつまずいています。 n次元実ベクトル空間において、 zを任意のn次ベクトル、Aをn×n 行列とし || Az || = || z || ならば <Ax, Ay> = <x, y> となることを証明せよ というものです。ちなみに "|| ||"は標準的なノルム < , >は標準内積です。 標準内積の定義式にまで戻って証明を試みました。 n Σ fi を、Σ[i=1, n](fi) と以後表記します。 i=1 x, y のi行目の成分をそれぞれ xi, yi、 Aの(i, j)成分を aij とすれば、 <x, y> = Σ[i=1, n](xi * yi) で内積は定義され、 Axのi行目の成分 = Σ[j=1, n](aij * xj) Ayのi行目の成分 = Σ[j=1, n](aij * yj) であるので、与えられた条件より <Ax, Ax> = Σ[i=1, n](Σ[j=1, n](aij * xj))^2 = <x, x> = Σ[i=1, n](xi)^2 <Ay, Ay> = Σ[i=1, n](Σ[j=1, n](aij * yj))^2 = <x, x> = Σ[i=1, n](yi)^2 よって(?) <Ax, Ay> = Σ[i=1, n]{(Σ[j=1, n](aij * xj)) * (Σ[j=1, n](aij * yj))} = ?? と行き詰ってしまいました。 シグマの中をうまく展開できないものでしょうか・・。

  • 統計学

    どうしても分からないので教えて欲しいと思います。 問題は、 「離散型確率変数X,Yの分布はP(X=xi)=pi(i=1,2)   P(Y=yi)=qi(i=1,2)である。(1)P(X=xi,Y=yj)=rij(i,j=1,2)とするとき、 ri1+ri2=pi(i=1,2) r1j+r2j=qj (j=1,2) が成立することを示せ。」です。 再提出となった自分のレポートは、  まず、x1とx2の確率(p1, p2とする)の合計が1になる表と、同様にy1とy2の確率(q1,q2とする)の合計が1となる表をかきました。  次に、iとjの組み合わせについて、(xi, yi)とrijとの対応する表をかき、 r11+r12=p1 ((1)とする) r21+r22=p2 ((2)とする) r11+r21=q1 ((3)とする) r12+r22=q2 ((4)とする)を導き、 (1)、(2)より、ri1+ri2=pi (i=1,2) (3)、(4)より、r1j+r2j=qj (j=1,2) したがって、ri1+ri2=pi (i=1,2) r1j+r2j=qj (j=1,2) が示せた。 と書いて出した所、 「文中の表は(ⅰ)P(X=xi,Y=y1)+P(X=xi,Y=y2)=pi(i=1,2) (ⅱ)P(X=x1,Y=yj)+P(X=x2,Y=yj)=qj (j=1,2) が成立することを前提にして作った表です。(ⅰ)、(ⅱ)の等式の成立を証明して下さい。」   と書かれて再提出でした。(ⅰ)、(ⅱ)の等式の成立の証明なんですが、いくら考えても出来ません。どなたかアドバイスお願いします。

  • 逆数補間の計算方法について

    こんにちは。前にも書かせてもらいましたが、どうしても計算ができないので、もう一度質問させてもらいました。 以下のような、洋書を読んで、最後にあるP(y)を出したいのですが、計算方法がわかりません。 ---------------------------------------------------------------- [Inverse Interpolation] A process called inverse interpolation is often used to approximate an inverse function. Suppose that values {Yi}=f({Xi}) have been computed at X0,X1,...,Xn. Using table Y ; Y0 Y1 Y2 ......Yn X ; X0 X1 X2 ......Xn we form the interpolation polynomial p(y)=Σ(i=1→n)CiΠ(j=0→i-1){Y-Yj} The orijinal relationship, y=f(x), has an inverse, under certain conditions. This inverse is being approximated by x=p(y). Procedures Coef and Eval can be used to carry out the inverse interpolation by reversing the arguments x and y in the calling sequence for Coef. Inverse interpolation can be used to find where a given functuin f has a root or zero. This means inverting the equation f(x)=0. We propose to do this by creating a table of values (f(Xi),Xi) and interpolating with a polynomial,p. Thus, p(Yi)=Xi. The points Xi should be chosen near the unknown root,r. The approximate root is then given by r ~p(0). For a concrete case, let the table of known values be Y;-0.5789200,-0.3626370,-0.1849160,-0.0340642,0.0969858 X; 1.0 , 2.0 , 3.0 , 4.0 , 5.0 The nodes in this problem are the points in the row of the table headed y, and the function values being interpolated are in the x row. The resulting polynomial is p(Y)=0.25Y^4+1.2Y^3+3.69Y^2+7.39Y+4.247470086 and p(0)=4.247470086. Only the last coefficient is shown with all the digits carried in the calculation, for it is the only one needed for the problem at hand. ---------------------------------------------------------------- <補足>CoefとEvalについて 「 procedure; Coef(n,{Xi},{Yi},{Ai}) real array; {Xi}0:n, {Yi}0:n, {Ai}0:n integer; i,j,n for i=0 to n do {Ai}←{Yi} end for for j=1 to n do for i=n to j step -1 do Ai←({Ai}-{Ai-1})/({Xi}-{Xi-j}) end for end for end procedure Coef 」 「 real function; Eval(n,{Xi},{Yi},{Ai}) real array; {Xi}0:n, {Ai}0:n integer; i,n real;t,temp temp←An for i=n-1 to 0 step -1 do temp←(temp)(t-{Xi})+{Ai} end for Eval←temp end function Eval」 ------------------------------------------------------------- XとYを扱い方がよくわかっていないので、計算できないのかなあと思います。分かる方、アドバイスお願いします(泣)

  • プログラムに内容と計算の質問です。

    こんにちは。 補間多項式についての、コンピュータのプログラムの解読に困っています。内容は、 「For the numerical experiments suggested in the computer problems, the following two procedures should be satisfactory. The first is called Coef. It requires as input the number n and tabular values in the array {Xi} and {Yi}. Remember that the number of points in the table is n+1. The procedure then computes the coefficients required in the Newton interpolating polynomial, storing them in the array{Ai}. -------------------------------------------------------- procedure; Coef(n,{Xi},{Yi},{Ai}) real array; {Xi}0:n, {Yi}0:n, {Ai}0:n integer; i,j,n for i=0 to n do {Ai}←{Yi} end for for j=1 to n do for i=n to j step -1 do Ai←({Ai}-{Ai-1})/({Xi}-{Xi-j}) end for end for end procedure Coef --------------------------------------------------------- このプログラムのn=3の時を考えるとき、  (1)j=1のとき、i=3,2,1 <j=1,i=1> {A1}=({A1}-{A0})/({X1}-{X0}) =({Y1}-{Y0})/({X1}-{X0}) <i=1,i=2> {A2}=({A2}-{A1})/({X2}-{X1}) =({Y2}-{Y1})/({X2}-{X1}) <i=1,i=3> {A3}=({A3}-{A2})/({X3}-{X2}) =({Y3}-{Y2})/({X3}-{X2}) (2)j=2のとき、i=3,2 <j=2,i=1> A1=({A2}-{A1})/({X2}-{X0})          ={[({Y2}-{Y1})/({X2}-{X1})]-[({Y1}-{Y0})/({X1}-{X0})]}/({X2}-{X0}) =この式変形をしたいのですが、どのように         すれば良いのかわかりません。ラグランジェ         型になりそうでなりません(泣)         (1)で求めた{A1},{A2},{A3}を使って求めな         いといけないみたいです。 見にくい表し方で申し訳ありません。 アドバイスお願いします!!

  • 同時確率関数

    次の問題が分からなくて困っています。 ある企業には、3種類のグループ(第1、第2、第3グループ)の労働者がいます。そして、勤務する全労働者に占める各グループの割合はp1、p2、p3(p1=p2=p3=1)であるとします。この割合が明確でないので、Aさんは次のように考えました。企業からn人の労働者を独立に選び、労働者がどのグループに属するかを調べる。そして、第1、第2、第3グループに属する労働者がX1、X2、X3人(n=X1+X2+X3)いるとする。このとき分からない値piとしてYi=Xi/n(i=1,2,3)の値を採用する。 このとき、確率変数Y1,Y2,Y3の同時確率関数を求めなさい。 問題は上記のようになっています。 いろいろな図書を調べて考えてみたところ、三項分布なのではないか?思ったのですが、それでもよく分かりません。また、単なる確率関数ではなく同時確率関数を求めなさいとなっているために、さらに理解しづらくなっています。 どなたか考え方をご教示いただけないでしょうか?お願いします。

パソコンにスキャンできない
このQ&Aのポイント
  • パソコンの保存したいスキャンデータが取得できない問題についての相談です。
  • Windows 11を使用しているパソコンでUSBケーブル経由でスキャナーを接続しています。
  • 初めてスキャンを行おうとした際に問題が発生しました。
回答を見る