3次元確率ベクトルの同時確率密度関数とガンマ関数について

このQ&Aのポイント
  • 3次元確率ベクトルの同時確率密度関数f(x,y,z)は、Γ(α+ β+ γ)/[Γ(α )Γ(β )Γ(γ)] x^(α-1)y^(β-1)z^(γ-1)で与えられる。
  • 確率変数Xの期待値はα/(α+β+γ)で求められる。
  • α=3, β=4, γ=5の場合、確率変数Xの期待値は1/4となる。
回答を見る
  • ベストアンサー

正の実数α、β、γに対し、3次元確率ベクトル(X,

正の実数α、β、γに対し、3次元確率ベクトル(X,Y,Z)の同時確率密度関数f(x,y,z)は、D={(x,y,z)∈R^3|x>=0, y>=0, z>=0, x+y+z=1} を用いて、 f(x,y,z)=Γ(α+ β+ γ)/[Γ(α )Γ(β )Γ(γ)] x^(α-1)y^(β-1)z^(γ-1) ((x,y,z) ∈Dのとき), 0 ((x,y,z) not∈Dのとき)(つまり(x,y,z) がDに属さないとき) として与えられている。ここで、Γ(s)は正の実数sに対し、Γ(s)=∮_0^∞ t^(s-1)e^(-t)dt により与えられるガンマ関数を表す。 α=3, β=4, γ=5のときの確率変数Xの期待値は1/4になるそうなのですが、それがなぜかわかりません。教えて下さいませんか。

質問者が選んだベストアンサー

  • ベストアンサー
回答No.2

ANo.1・・! ちと訂正・・<(_ _)> ∭[D]{xf(x,y,z)}dxdydz ={Γ(α+β+γ)/{Γ(α)(β)Γ(γ)}*(1/γ)*γ Γ(γ)Γ(α+1) Γ(β)/{(α+β+γ)Γ(α+β+γ)} =Γ(α+β+γ)/{Γ(α)(β)Γ(γ)}*αΓ(α) Γ(β)Γ(γ)/{(α+β+γ)Γ(α+β+γ)} =α/(α+β+γ)

00489d
質問者

お礼

解説下さいまして、ありがとうございました。

その他の回答 (1)

回答No.1

"α=3, β=4, γ=5のときの確率変数Xの期待値は" ・・と言う言い回しのところがしっくりこないのだが、 単純に ∭[D]{xf(x,y,z)}dxdydzを計算してみると ∭[D]{xf(x,y,z)}dxdydz ={Γ(α+β+γ)/[Γ(α)(β)Γ(γ)]*(1/γ)}*γ Γ(γ)Γ(α+1) Γ(β)/{(α+β+γ)Γ(α+β+γ)} =Γ(α+β+γ)/[Γ(α)(β)Γ(γ)]*γ Γ(γ)/{(α+β+γ)Γ(α+β+γ)}*αΓ(α) Γ(β)} =α/(α+β+γ) ・・となりα=3, β=4, γ=5を代入すれば =3/12 =1/4 にはなるみたい・・!

関連するQ&A

  • 条件付き確率の証明?

    確率変数YとZが独立の時、 f(X|Y)=Ez[f(X|Y,Z)] を示せ。 ただし確率密度関数f(y)は常に正とし、Ezは確率変数Zに関する期待値を意味する。 この証明の仕方を教えていただけないでしょうか。 よろしくお願いします。

  • ベクトル空間 次元 について

    前回質問(数ベクトル空間 ベクトル空間)させて頂いた内容です。 http://okwave.jp/qa/q8631000.html#answer 前回の質問内容を整理してわからなかった点を再度質問させて頂きます。 ベクトル空間の次元についてですが、以下のように理解しました。 Vはベクトル空間であるとします。 x,y,z∈Vについて、 (1)x,y,zのうち2つのベクトルが0なら1次元ベクトル空間 (2)x,y,zのうち1つのベクトルが0なら2次元ベクトル空間 (3)x,y,zがどれも0ベクトルでなければ3次元ベクトル空間 と理解しました。 R^2は2次元ベクトル空間 R^3は3次元ベクトル空間 R^nはn次元ベクトル空間 という説明がウェブ上で多々ありますが、 これは、ベクトル空間の「成分の数(項数)」であって次元とは関係 ないと理解しました。 ここまでで間違いありますでしょうか? 間違いがあればご指摘よろしくお願い致します。 *****以下、質問内容***** x,y,z∈Vについて、 (1)x,y,zのうち2つのベクトルが0なら1次元ベクトル空間 (2)x,y,zのうち1つのベクトルが0なら2次元ベクトル空間 (3)x,y,zがどれも0ベクトルでなければ3次元ベクトル空間 ですが、 (1)、(2)、(3)はいずれもR^3の部分空間とのことなのですが、この点がよくわかりません・・・ 私のイメージなのですが、 (1)⊂(2)⊂(3)のイメージがあるのですが、これは大きな間違いでしょうか? 3次元ベクトル空間の部分空間は2次元ベクトル空間と1次元ベクトル空間 と言ったイメージなのですが・・・ R^3の部分空間であるとは、「成分が3つのベクトル空間」の部分空間と言う事で、 次元とは無関係ですよね? 以上、ご回答よろしくお願い致します。

  • 2変量の確率分布について

     統計学の勉強をしています。一様分布における2変量の確率変数についてわからなくなったので質問させてください。  一様分布の確率密度関数はfx(x)=1/(b-a)ですが、b=1,a=0とするとfx(x)=1となりますよね。  このことを踏まえて2変量t=x+y(yもxと同様の一様分布の確率でxとyは独立)を定義して、その確率密度関数はf(t)=∫fx(x)fy(t-x)dxで与えられますよね(ここで間違っていたならすみません…)  そこでこの関数にfx(x)=1,fy(y)=1を代入して∫範囲を0から1(dxで積分ですから)に設定して積分をするとf(t)=1となってしまいました。  このままtにおいてtの期待値を求めると∫(0,2)tf(t)dt=2となりました。(積分範囲はdtについてですから0から2までとしました)  しかし、よく考えてみると0から2までの範囲の一様分布でその期待値となるのは普通1じゃないかと思います。  計算が間違っているのか、そもそも考え方が違うのか、わかる方がいらっしゃったら、ご教授していただけませんでしょうか?よろしくお願いします。

  • 指数分布・条件付確率

    「Xの分布=Yの分布=Exp(1)のとき、P(Y≧3X)を求めよ」 という問題についてですが、まず Xの確率密度関数:f(x)=e^(-x) (x>0) Yの確率密度関数:g(y)=e^(-y) (y>0) と表せます。 解答では、 P(Y≧3X) =∫[-∞~∞]P(Y≧3X|X=t)*f(t)dt =∫[0~∞]P(Y≧3X|X=t)*e^(-t)dt  (★) =∫[0~∞]P(Y≧3t)*e^(-t)dt    (▲) =∫[0~∞]{∫[3t~∞]g(u)du}*e^(-t)dt =∫[0~∞]{∫[3t~∞]e^(-u)du}*e^(-t)dt =1/4 となっています。 疑問なのは★→▲への計算なのですが、 条件付確率の条件が外れるということは、XとYが独立だということになります。 しかし、問題文の1行からはXとYが独立とは、私には読み取れないのです。 私が読み取れないだけで、独立という設定なのでしょうか? それとも、指数分布の性質により独立と判断できるのでしょうか?

  • y軸に対称な確率密度関数(遇関数?)

    y軸に対称な確率密度関数(遇関数?) に関しての問題が良く分かりません。 一応は自分でも考えたのですが、ご指導を願います。 r.v.Xのp.d.f.p(x)はy軸に関して対称である。 S(x)=∫[0 x]p(t)dt (x>=0)とおいて、以下の確率をS(x)で示せ。 (1)P(0 <= x <= 2) ∫[0 2]p(t)dt = S(2) (2)P(|x| <= 1/2) P(-1/2 <= x <= 1/2) y軸に対称∴遇関数でもあるので、 2∫[0 1/2]p(t)dt = 2*S(1/2) (3)P(-2 <= x <= 1) ∫[-2 0]p(t)dt + ∫[0 1]p(t)dt y軸に対称∴遇関数でもあるので、∫[0 2]p(t)dt + ∫[0 1]p(t)dt = S(2)+S(1) (4)P(3 <= x) P(3 <= x)=1-P(x < 3)=1-∫[-∞ 3]p(t)dt=∫[3 ∞]p(t)dt まったくもって自信がありませんが、いかがでしょうか? お手数をお掛けします。

  • 確率変数の和の確率密度関数の問題

    X,Y,Zは互いに独立に一様分布U(0,1)に従う確率変数としたとき、S=X+Y+Zの確率密度関数 はどのように求めればよいのでしょうか? X+Y と同じように考えればいいのでしょうか? 宜しくお願いします。

  • 4次元空間の超平面で、パラメータを消去するには?

    4次元のxyzw直交空間を考えます。 直線は、パラメータを用いて、 x=x[0]+a[1]s y=y[0]+b[1]s z=z[0]+c[1]s w=w[0]+d[1]s のように書けて、パラメータを消すと、 (x-x[0])/a[1]=(y-y[0])/b[1]=(z-z[0])/c[1]=(w-w[0])/d[1] のように書けます。 平面(?)は、パラメータを用いて、 x=x[0]+a[1]s+a[2]t y=y[0]+b[1]s+b[2]t z=z[0]+c[1]s+c[2]t w=w[0]+d[1]s+d[2]t のように書けますが、パラメータを消すとどうなるのでしょうか? 超平面は、パラメータを用いて、 x=x[0]+a[1]s+a[2]t+a[3]u y=y[0]+b[1]s+b[2]t+b[3]u z=z[0]+c[1]s+c[2]t+c[3]u w=w[0]+d[1]s+d[2]t+d[3]u のように書けますが、パラメータを消すとどうなるのでしょうか? おそらくAx+By+Cz+Dw+E=0のように書けるとは思いますが、それらの係数は具体的にはどのような形なのでしょうか? 3次元空間の平面の場合には、この最後の問いは、2つの3次元ベクトルの外積で表されると思うので、今回の設定を4次元にしてみました。

  • x,y,z>0 実数で、x^3+xy^2+yz^2>=kxyz が成り

    x,y,z>0 実数で、x^3+xy^2+yz^2>=kxyz が成り立つとき kの値の取り得る範囲を求めよ。 つぎのように考えましたが、添削をお願いします。 両辺をxyzで割ると (x/y)*(x/z)+y/z+z/x>=k ...(1) y/x=s,z/y=t,x/z=rとおくと str=1, (1)は、1/(s^2*t)+1/t+st>=k 左辺=aと置いて、分母をはらい、tについての方程式とみると s^3*t^2-a*s^2*t+1+s^2=0 これが、実数解をもつから、軸>0より 判別式>=0を計算すると a^2>=4(1+s^2)/s これより、 a^2>=6,よって、√6<=a よろしくお願いします。

  • 4次元空間上での平面の式

    任意の点を(x,y,z,u)とした4次元空間で (1)3次元の立体を表す式は ax+by+cz+du=e でいいですか? (2)2次元の平面を表す式は一般にどのような形になりますか? 上記のことに疑問を持った理由。 2次元空間で1次元の直線を表す式は、一般にax+by=cとなる。 これは、2点(x,y),(xo,yo)を通り、方向ベクトルが(a',b')で媒介変数tとして x=a't+xo y=b't+yo と書くこともできる。 3次元空間で2次元の平面を表す式は、一般にax+by+cz=d となる。 これは、 平面上の2点(x,y,z)と(xo,yo,zo)を結ぶベクトルとこの平面に垂直な直線の方向ベクトル(a,b,c)の内積が0であるという条件より導かれる。 実際に計算すると a(x-xo)+b(y-yo)+c(z-zo)=0 ax+by+cz=axo+byo+czo になり、ax+by+cz=dという形と同値であることが確認できる。 【別な考え】 3次元空間内の平面は、異なる3つの点によって決定するので、異なる3点を P(xo,yo,zo)、Q(x1,y1,z1)、R(x2,y2,z2) とする。この平面上の任意の点X(x,y,z)は、媒介変数t,sを使って OX↑=OP↑+tPQ↑+sPR↑ と書ける。 成分表示にするために OP↑=(xo,yo,zo) PQ↑=(a,b,c) PR↑=(a',b'c') と方向ベクトルを定義すると、 x=xo+at+a's......(1) y=yo+bt+b's......(2) z=zo+ct+c's......(3) という書き方も平面を表す式である。 実際に(1)と(2)から未知数t,sについてx,yの式で表すことができるので、それを(3)式に代入すれば、(1)(2)(3)式は、一つの式 a"x+b"y+c"z=d'という形になる。 直線を表す式は、媒介変数tを使って x=at+xo y=bt+yo z=ct+zo または、 (x-xo)/a=(y-yo)/b=(z-zo)/c=t となる。 4次元空間で同じように、 直線や平面や立体を考えてみた。 2次元では、(1,0)と(0,1)が直交の基底ベクトル。 3次元では、(1,0,0)と(0,1,0)と(0,0,1)が直交の基底ベクトル。 したがって、 4次元では、(1,0,0,0)と(0,1,0,0)と(0,0,1,0)と(0,0,0,1)が直交の基底ベクトル。 4次元空間では、点は4つの成分で表される。 4次元空間での直線について。 直線は2点が与えられば書ける。 2点(x,y,z,u)と(xo,yo,zo,uo)を通り、その直線の方向ベクトルが(a,b,c,d)だとしたら、媒介変数tを使って、 x=at+xo y=bt+yo z=ct+zo u=dt+uo となって (x-xo)/a=(y-yo)/b=(z-zo)/c=(u-uo)/d=t 次に4次元空間での3次元立体について。 2次元空間では、それより一つ次数が低い1次元の直線は一つの式 ax+by=c で与えられた。 3次元空間では、それより一つ次数の低い2次元の平面は、一つ式 ax+by+cz=d で表さられた。 したがって、4次元空間では、それより一つ次数の低い3次元の立体は、 ax+by+cz+du=e で表されるだろう。 【別な考え】 4次元空間では、ある方向ベクトル(a,b,c,d)に直交する立体は一つしかない。なぜなら、4次元空間での基底ベクトルは4つで空間(立体)は3つの基底ベクトルで決定されて、残り一つが残っているからだ。 立体上の2点(x,y,z,u)と(xo,yo,zo,uo)を結ぶベクトルとこの立体に垂直な直線の方向ベクトル(a,b,c,d)の内積が0であるという条件で計算すると a(x-xo)+b(y-yo)+c(z-zo)+d(u-uo)= 0 ax+by+cz+du=axo+byo+czo+duo になり、ax+by+cz+du=eという形になる。 2次元の平面はどうだろうか? (ここからが本題) 4次元空間では、ある方向ベクトル(a,b,c,d)に直交する平面は、2つあるはずだ。 なぜなら、4次元空間での基底ベクトルは4つで平面は2つの基底ベクトルで決定されて、残り2つが残っていて、それはこの平面に直交するように選べるからだ。 平面は、異なる3つの点によって決定するので、異なる3点を P(xo,yo,zo,uo)、Q(x1,y1,z1,u1)、R(x2,y2,z2,u2)、 とする。この平面上の任意の点X(x,y,z,u)は、媒介変数t,sを使って OX↑=OP↑+tPQ↑+sPR↑ と書ける。 成分表示にするために OP↑=(xo,yo,zo,uo) PQ↑=(a,b,c,d) PR↑=(a',b',c',d') と方向ベクトルを定義すると、 x=xo+at+a's......(1) y=yo+bt+b's......(2) z=zo+ct+c's......(3) u=uo+dt+d's.....(4) という書き方も平面を表す式である。 (1)と(2)を連立して、未知数t,sについてx,yの式で表すことができるので、それを(3)式と(4)式代入すれば、(1)(2)(3)(4)式は、2つの式 a"x+b"y+c"z+d"u=e' a"'x+b"'y+c"'z+d"'u=e" になる。 この2つの式からuを消去すれば、結局、 Ax+By+Cz=D という形になる。 zを消去すれば、 Ax+By+Cu=D yを消去すれば、 Ax+Bu+Cz=D xを消去すれば、 Au+By+Cz=D

  • 【指数分布】確率変数の和

    X1,X2,...,Xnは互いに独立な確率変数であり、 それぞれ指数分布 f(x)=1/λ*exp(-x/λ) (x>0) に従います。 確率変数 Yk=X1+X2+...+Xk の確率密度関数をfk(x) とするとき、 (1)fk(x)=∫[0,∞]fk-1(x-t)f(t)dt (x>0) を示せ。 (2)fn(x)を求めよ。 (3)確率変数 Yk=X1+X2+...+Xk の期待値、分散を求めよ。 との問題なのですが、 (1)について、 XとYが独立であるとき、Z=X+Yの確率密度関数fZ(z)は 畳み込み積分で与えられるので、 fZ(z)=∫[-∞→∞]fX(x)fY(z-x)dx を...と考えたのですが 上手く証明ができません。 また、(2)について、 指数分布が事象が起きる時間間隔が従う分布だということから 要は、n回の事象が起きるまでの時間と考え、 fn(x)=n/λ だとは思うのですが、よくこれは特性関数から計算すれば良いのでしょうか... どなたか数学に詳しい方が居られましたら、 ご教授のほどよろしくお願いいたします。