• ベストアンサー
  • 暇なときにでも

4次元空間の超平面で、パラメータを消去するには?

4次元のxyzw直交空間を考えます。 直線は、パラメータを用いて、 x=x[0]+a[1]s y=y[0]+b[1]s z=z[0]+c[1]s w=w[0]+d[1]s のように書けて、パラメータを消すと、 (x-x[0])/a[1]=(y-y[0])/b[1]=(z-z[0])/c[1]=(w-w[0])/d[1] のように書けます。 平面(?)は、パラメータを用いて、 x=x[0]+a[1]s+a[2]t y=y[0]+b[1]s+b[2]t z=z[0]+c[1]s+c[2]t w=w[0]+d[1]s+d[2]t のように書けますが、パラメータを消すとどうなるのでしょうか? 超平面は、パラメータを用いて、 x=x[0]+a[1]s+a[2]t+a[3]u y=y[0]+b[1]s+b[2]t+b[3]u z=z[0]+c[1]s+c[2]t+c[3]u w=w[0]+d[1]s+d[2]t+d[3]u のように書けますが、パラメータを消すとどうなるのでしょうか? おそらくAx+By+Cz+Dw+E=0のように書けるとは思いますが、それらの係数は具体的にはどのような形なのでしょうか? 3次元空間の平面の場合には、この最後の問いは、2つの3次元ベクトルの外積で表されると思うので、今回の設定を4次元にしてみました。

共感・応援の気持ちを伝えよう!

  • 回答数4
  • 閲覧数269
  • ありがとう数36

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.3
  • info22
  • ベストアンサー率55% (2225/4034)

直線は >(x-x[0])/a[1]=(y-y[0])/b[1]=(z-z[0])/c[1]=(w-w[0])/d[1] を書き換えると (y-y[0])=(x-x[0])b[1]/a[1] (z-z[0])=(x-x[0])c[1]/a[1] (w-w[0])=(x-x[0])d[1]/a[1] という3つの独立な式で表せますね。 この考え方を平面に適用すれば > 平面(?)は、 (z-z[0])=(x-x[0])A+(y-y[0])B (w-w[0])=(x-x[0])C+(y-y[0])D という2つの独立な式を使って表せます。 係数はA,B,C,Dは > x=x[0]+a[1]s+a[2]t > y=y[0]+b[1]s+b[2]t からs,tを求め > z=z[0]+c[1]s+c[2]t > w=w[0]+d[1]s+d[2]t に代入すれば求められます。 同様に > 超平面は、 > x=x[0]+a[1]s+a[2]t+a[3]u > y=y[0]+b[1]s+b[2]t+b[3]u > z=z[0]+c[1]s+c[2]t+c[3]u をs,t,uの連立方程式としてs,t,uを求め >w=w[0]+d[1]s+d[2]t+d[3]u に代入して >Ax+By+Cz+Dw+E=0 …(*) の形に整理すればいいですね。 この方程式の係数(A,B,C,D,E)は定数倍(0でない定数をかける)しても方程式が変わるわけではないですから,(*)の式の係数が簡単になるように適当な定数をかけて整理するといいですね。 問題の丸投げはこのサイトでは禁止なので、丸解答すれば削除対象になります。したがって 上記のヒントをもとに質問者さんの解答を作って補足に書いて頂けばチェックします。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます。一晩考えてみて、行列式を使えば表現できそうだと分かりました。 パラメータを用いて、 x=x[0]+a[1]s+a[2]t+a[3]u y=y[0]+b[1]s+b[2]t+b[3]u z=z[0]+c[1]s+c[2]t+c[3]u w=w[0]+d[1]s+d[2]t+d[3]u と書ける超平面は、4つのベクトル (x-x[0] , y-y[0] , z-z[0] , w-w[0]), (a[1] , b[1] , c[1] , d[1]), (a[2] , b[2] , c[2] , d[2]), (a[3] , b[3] , c[3] , d[3]), が原点を通る超平面上にあるので、それを4x4行列とみなした 行列式=0と書けます。 それが、Ax+By+Cz+Dw+E=0のように書けるとき、たとえばAは、 (b[1] , c[1] , d[1]) (b[2] , c[2] , d[2]) (b[3] , c[3] , d[3]) の行列式に等しい。 また同じことですが、階数が3であることから、 x=○y+○z+○w+○とも書けます。 パラメータを用いて、 x=x[0]+a[1]s+a[2]t y=y[0]+b[1]s+b[2]t z=z[0]+c[1]s+c[2]t w=w[0]+d[1]s+d[2]t と書ける2次元平面は、3つのベクトル (x-x[0] , y-y[0] , z-z[0] , w-w[0]), (a[1] , b[1] , c[1] , d[1]), (a[2] , b[2] , c[2] , d[2]), が原点を通る2次元平面上にあるので、それを3x4行列とみなして、 内部にあるどんな3x3行列の行列式=0と書けます。 それは2個の等式として、 Ax+By+Cz+E=0かつFx+Gy+Hw+I=0 の形に書けます。 また同じことですが、階数が2であることから、 x=○z+○w+○かつy=○z+○w+○とも書けます。 パラメータを用いて、 x=x[0]+a[1]s y=y[0]+b[1]s z=z[0]+c[1]s w=w[0]+d[1]s と書ける直線は、2つのベクトル (x-x[0] , y-y[0] , z-z[0] , w-w[0]), (a[1] , b[1] , c[1] , d[1]), が原点を通る直線上にあるので、それを2x4行列とみなして、 内部にあるどんな2x2行列の行列式=0と書けます。 それは3個の等式として、 (x-x[0])/a[1]=(y-y[0])/b[1]=(z-z[0])/c[1]=(w-w[0])/d[1] と書けます。 また同じことですが、階数が1であることから、 x=○w+○かつy=○w+○かつz=○w+○とも書けます。

関連するQ&A

  • 4次元空間上での平面の式

    任意の点を(x,y,z,u)とした4次元空間で (1)3次元の立体を表す式は ax+by+cz+du=e でいいですか? (2)2次元の平面を表す式は一般にどのような形になりますか? 上記のことに疑問を持った理由。 2次元空間で1次元の直線を表す式は、一般にax+by=cとなる。 これは、2点(x,y),(xo,yo)を通り、方向ベクトルが(a',b')で媒介変数tとして x=a't+xo y=b't+yo と書くこともできる。 3次元空間で2次元の平面を表す式は、一般にax+by+cz=d となる。 これは、 平面上の2点(x,y,z)と(xo,yo,zo)を結ぶベクトルとこの平面に垂直な直線の方向ベクトル(a,b,c)の内積が0であるという条件より導かれる。 実際に計算すると a(x-xo)+b(y-yo)+c(z-zo)=0 ax+by+cz=axo+byo+czo になり、ax+by+cz=dという形と同値であることが確認できる。 【別な考え】 3次元空間内の平面は、異なる3つの点によって決定するので、異なる3点を P(xo,yo,zo)、Q(x1,y1,z1)、R(x2,y2,z2) とする。この平面上の任意の点X(x,y,z)は、媒介変数t,sを使って OX↑=OP↑+tPQ↑+sPR↑ と書ける。 成分表示にするために OP↑=(xo,yo,zo) PQ↑=(a,b,c) PR↑=(a',b'c') と方向ベクトルを定義すると、 x=xo+at+a's......(1) y=yo+bt+b's......(2) z=zo+ct+c's......(3) という書き方も平面を表す式である。 実際に(1)と(2)から未知数t,sについてx,yの式で表すことができるので、それを(3)式に代入すれば、(1)(2)(3)式は、一つの式 a"x+b"y+c"z=d'という形になる。 直線を表す式は、媒介変数tを使って x=at+xo y=bt+yo z=ct+zo または、 (x-xo)/a=(y-yo)/b=(z-zo)/c=t となる。 4次元空間で同じように、 直線や平面や立体を考えてみた。 2次元では、(1,0)と(0,1)が直交の基底ベクトル。 3次元では、(1,0,0)と(0,1,0)と(0,0,1)が直交の基底ベクトル。 したがって、 4次元では、(1,0,0,0)と(0,1,0,0)と(0,0,1,0)と(0,0,0,1)が直交の基底ベクトル。 4次元空間では、点は4つの成分で表される。 4次元空間での直線について。 直線は2点が与えられば書ける。 2点(x,y,z,u)と(xo,yo,zo,uo)を通り、その直線の方向ベクトルが(a,b,c,d)だとしたら、媒介変数tを使って、 x=at+xo y=bt+yo z=ct+zo u=dt+uo となって (x-xo)/a=(y-yo)/b=(z-zo)/c=(u-uo)/d=t 次に4次元空間での3次元立体について。 2次元空間では、それより一つ次数が低い1次元の直線は一つの式 ax+by=c で与えられた。 3次元空間では、それより一つ次数の低い2次元の平面は、一つ式 ax+by+cz=d で表さられた。 したがって、4次元空間では、それより一つ次数の低い3次元の立体は、 ax+by+cz+du=e で表されるだろう。 【別な考え】 4次元空間では、ある方向ベクトル(a,b,c,d)に直交する立体は一つしかない。なぜなら、4次元空間での基底ベクトルは4つで空間(立体)は3つの基底ベクトルで決定されて、残り一つが残っているからだ。 立体上の2点(x,y,z,u)と(xo,yo,zo,uo)を結ぶベクトルとこの立体に垂直な直線の方向ベクトル(a,b,c,d)の内積が0であるという条件で計算すると a(x-xo)+b(y-yo)+c(z-zo)+d(u-uo)= 0 ax+by+cz+du=axo+byo+czo+duo になり、ax+by+cz+du=eという形になる。 2次元の平面はどうだろうか? (ここからが本題) 4次元空間では、ある方向ベクトル(a,b,c,d)に直交する平面は、2つあるはずだ。 なぜなら、4次元空間での基底ベクトルは4つで平面は2つの基底ベクトルで決定されて、残り2つが残っていて、それはこの平面に直交するように選べるからだ。 平面は、異なる3つの点によって決定するので、異なる3点を P(xo,yo,zo,uo)、Q(x1,y1,z1,u1)、R(x2,y2,z2,u2)、 とする。この平面上の任意の点X(x,y,z,u)は、媒介変数t,sを使って OX↑=OP↑+tPQ↑+sPR↑ と書ける。 成分表示にするために OP↑=(xo,yo,zo,uo) PQ↑=(a,b,c,d) PR↑=(a',b',c',d') と方向ベクトルを定義すると、 x=xo+at+a's......(1) y=yo+bt+b's......(2) z=zo+ct+c's......(3) u=uo+dt+d's.....(4) という書き方も平面を表す式である。 (1)と(2)を連立して、未知数t,sについてx,yの式で表すことができるので、それを(3)式と(4)式代入すれば、(1)(2)(3)(4)式は、2つの式 a"x+b"y+c"z+d"u=e' a"'x+b"'y+c"'z+d"'u=e" になる。 この2つの式からuを消去すれば、結局、 Ax+By+Cz=D という形になる。 zを消去すれば、 Ax+By+Cu=D yを消去すれば、 Ax+Bu+Cz=D xを消去すれば、 Au+By+Cz=D

  • n次元空間での直線・平面・立体....の式

    ベクトルについて勉強していて疑問に思ったことがあるので質問します。 n次空間で、点(x1,x2,x3,....xn)=xo↑の位置ベクトルを通り、方向がa↑=(a1,a2,a3....an)の直線の式は、tを媒介変数として、 v↑=a↑t+xo↑で表すことができます。 2次元だったら、 v1=a1•t+x1 v2=a2•t+x2 より、 (v1-x1)/a1=(v2-x2)/a2=t v1をx、v2をy、x1をa、x2をb、a2/a1をm と書き直すと見慣れた直線の式 y-b=m(x-a)になりますね。 3次元では、 (v1-x1)/a1=(v2-x2)/a2=(v3-x3)/a3=t となります。 これは、 (a,b,c)を通り、ベクトル方向が(l,m,n) である直線の式 (x-a)/l=(y-b)/m=(x-c)/n と同じ形です。 ということは、n次元の直線の式は、 (v1-x1)/a1=(v2-x2)/a2=(v3-x3)/a3=....(vn-xn)/an=t ですよね。 直線の式は、n次元に拡張できました。 次に平面の式を考えます。 3次元空間内における平面(2次元)とは、ある1つの直線に直交した面です。 その平面上の定点を(x1,x2,x3)=xo↑とします。 任意の位置ベクトルを(v1,v2,v3)=v↑として、ある1つの直線の方向ベクトルを (a1,a2,a3)=a↑とします。 平面上の任意のベクトルとa↑は、直交するので、 内積=0 すなわち、〈v↑-xo↑・a↑〉=0がなりますね。 成分で書くと、 a1(v1-x1)+a2(v2-x2)+a3(v3-x3)=0 ですね。 a↑に独立なベクトルは、3次元空間上に2本取れます。 すなわち、これは「面(2次元)」ですね。 a1をa、a2をb、a3をc、v1をx、v2をy、v3をzに書き直すと、 これは、平面の式 ax+by+cz=d になります。 このように、3次元空間では、2次元の面と1次元の直線が考えることができました。 そこで、これを4次元に拡張してみました。 4次元空間では、直線は、 (v1-x1)/a1=(v2-x2)/a2=(v3-x3)/a3=(v4-x4)/a4=t ですね。 この直線と直交する線は、3本あります。 〈v↑-xo↑・a↑〉=0 なので、成分で表すと、 a1(v1-x1)+a2(v2-x2)+a3(v3-x3)+a4(v4-x4)=0....(1) ですね。 ここで、質問ですが、(1)の式は、独立した3つのベクトルを含むので、「立体(3次元)」と言ってもいいのでしょうか? もし、その認識が正しかったら、 4次元空間上での立体(3次元)の式は、xyzuを変数として、 一般にax+by+cz+du=e という式で表すことができるという認識は正しいですか? 4次元空間での直線(1次元空間)の式は、先に示したように (v1-x1)/a1=(v2-x2)/a2=(v3-x3)/a3=(v4-x4)/a4 ですね。 3次元空間だったら、2次元空間の面と1次元空間の直線を式で書くことができました。 4次元空間だったら、3次元空間の立体と1次元空間の直線は、式として与えらると考えると、 4次元空間上での「面(2次元)」の式は、存在するのですか? n次元に拡張したら、 a1x1+a2x2+a3x3+.......anxn=kという式は、 は、(n-1)次元空間を表す式であると言っていいのでしょうか? また、その時、 (n-2)次元空間を表す式 (n-3)次元空間を表す式....は考えることができるのでしょうか? 多分、専門書などを解読すれば答えは見つかるかもしれませんが、自分でこのような疑問を思ったので投稿しました。

  • 4次元空間について

    4次元空間に半径1、原点中心の超球(x^2+y^2+z^2+w^2=1)があります。これを、4次元における平面(例えばa*x+b*y+c*z+d*w=eといった平面)で切り取った切片、つまりこの平面と超球の共通部分はおそらく3つの変数で表せると思うのですが、その切片を3次元空間で表すとどんな図形になるのでしょうか? 考えているのですがイマイチつかめません。 どなたかお力添えをおねがいします。

その他の回答 (3)

  • 回答No.4
  • info22
  • ベストアンサー率55% (2225/4034)

#3です。 A#3の補足です。 > Ax+By+Cz+Dw+E=0のように書ける これでもいいですが、定数項Eのない次の形式でも書けます。 A(x-x[0])+B(y-y[0])+C(z-z[0])+D(w-w[0])=0 勿論、この方程式の係数(A,B,C,D,E)は定数倍(0でない定数をかける)して簡単化できます。 補足で解答を書いてもらえれば、正誤のチェックをします。

共感・感謝の気持ちを伝えよう!

  • 回答No.2

#1です。a×b≠0のミスでした(;_;)

共感・感謝の気持ちを伝えよう!

  • 回答No.1

x=c1+a1s+b1t y=c2+a2s+b2t z=c3+a3s+b3t を平面の式とし、このパラメータ表示を2つのベクトルa=(a1,a2,a3),b=(b1,b2,b3)のはる平面とすればu=(x,y,z),c=(c1,c2,c3)として,u=as+bt+cとなる。 これを内積により、平面の式は(u|v)=pとなる。vは平面に垂直なベクトル、pは定数。 v=a×bにとって計算すれば各定数との対応がとれます。当然a×b=0は必要です。 多次元空間の超平面も同様にできます。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます。一晩考えてみて、行列式を使えば表現できそうだと分かりました。 パラメータを用いて、 x=x[0]+a[1]s+a[2]t+a[3]u y=y[0]+b[1]s+b[2]t+b[3]u z=z[0]+c[1]s+c[2]t+c[3]u w=w[0]+d[1]s+d[2]t+d[3]u と書ける超平面は、4つのベクトル (x-x[0] , y-y[0] , z-z[0] , w-w[0]), (a[1] , b[1] , c[1] , d[1]), (a[2] , b[2] , c[2] , d[2]), (a[3] , b[3] , c[3] , d[3]), が原点を通る超平面上にあるので、それを4x4行列とみなした 行列式=0と書けます。 それが、Ax+By+Cz+Dw+E=0のように書けるとき、たとえばAは、 (b[1] , c[1] , d[1]) (b[2] , c[2] , d[2]) (b[3] , c[3] , d[3]) の行列式に等しい。 また同じことですが、階数が3であることから、 x=○y+○z+○w+○とも書けます。 パラメータを用いて、 x=x[0]+a[1]s+a[2]t y=y[0]+b[1]s+b[2]t z=z[0]+c[1]s+c[2]t w=w[0]+d[1]s+d[2]t と書ける2次元平面は、3つのベクトル (x-x[0] , y-y[0] , z-z[0] , w-w[0]), (a[1] , b[1] , c[1] , d[1]), (a[2] , b[2] , c[2] , d[2]), が原点を通る2次元平面上にあるので、それを3x4行列とみなして、 内部にあるどんな3x3行列の行列式=0と書けます。 それは2個の等式として、 Ax+By+Cz+E=0かつFx+Gy+Hw+I=0 の形に書けます。 また同じことですが、階数が2であることから、 x=○z+○w+○かつy=○z+○w+○とも書けます。 パラメータを用いて、 x=x[0]+a[1]s y=y[0]+b[1]s z=z[0]+c[1]s w=w[0]+d[1]s と書ける直線は、2つのベクトル (x-x[0] , y-y[0] , z-z[0] , w-w[0]), (a[1] , b[1] , c[1] , d[1]), が原点を通る直線上にあるので、それを2x4行列とみなして、 内部にあるどんな2x2行列の行列式=0と書けます。 それは3個の等式として、 (x-x[0])/a[1]=(y-y[0])/b[1]=(z-z[0])/c[1]=(w-w[0])/d[1] と書けます。 また同じことですが、階数が1であることから、 x=○w+○かつy=○w+○かつz=○w+○とも書けます。

関連するQ&A

  • 4次元空間の3つのベクトルが互いに直交する条件

    以前、 4次元空間の4つのベクトルが張る空間が1次元、2次元、3次元、4次元である条件 http://oshiete1.goo.ne.jp/qa3519203.html において、いろいろ教えていただけました。 同様にすれば、4次元空間の3つのベクトルが張る空間が1次元、2次元、3次元である条件、が成分を用いて書けることになります。 ところで、いくつかのベクトルが張る空間が1次元というのは、すべてのベクトルが平行ということです。 今回、それとは逆に「すべてのベクトルが互いに直交する」という条件を考えてみたいと思います。 4次元空間にゼロベクトルでない4つのベクトルを考えます。 a↑=(a[1],a[2],a[3],a[4]) b↑=(b[1],b[2],b[3],b[4]) c↑=(c[1],c[2],c[3],c[4]) d↑=(d[1],d[2],d[3],d[4]) とします。 a↑、b↑、c↑、d↑の4つのベクトルが互いに直交する条件は、 4つのベクトルでできる立体=超立方体 なので、行列式の絶対値は、各辺の積と等しく、 |a↑ b↑ c↑ d↑|^2=|a↑|^2* |b↑|^2* |c↑|^2*| d↑|^2 とかけます。成分でも書けます。 a↑、b↑の2つのベクトルが互いに直交する条件は、 内積を用いて、 a↑・b↑=0 とかけます。成分でも書けます。 最後に、a↑、b↑、c↑の3つのベクトルが互いに直交する条件を、できるだけ簡素に書きたいとき、どういった書き方になるのでしょうか? すべての組の内積が0というのより、なんらかの行列式を用いて書きたいのですが。

  • 4次元空間問題

    4次元ベクトル空間(変数はxyzu) x+y+z+u=1 において、 この式を満たす空間上にあり、この空間と直交し、お互いに直交する3つのベクトル空間を求めて下さい。

  • 平面の方程式について

    3次元空間を考える。直線l,mの方程式を l:x-1=y+2/2=z-3/-2 m:x+1/-2=y-2/2=z+3  とする。 (1)直線l,mをベクトル方程式で表せ。 (2)直線lを含み、直線mに平行な平面πの方程式を求めよ。 (3)平面πと直線mの距離hを求めよ。 (1),(2)はできたんですが、(3)がわかりません。 点と平面の距離の公式を使えばいいんでしょうか・・・。

  • 4次元空間で点と直線・平面の距離の公式の一般化を考えたい

    4次元空間と書いたのは、一般化と単に記述の簡単さが目的です。 さらに記述の簡単さのために、4次元空間の中の点(p,q,r,s)と、n次元ベクトル空間との距離を考えたいと思います。 4次元空間の中の点(p,q,r,s)と、(a[1],a[2],a[3],a[4])で張られる1次元ベクトル空間(原点を通る直線)との距離の公式はどう書けるのでしょうか? 4次元空間の中の点(p,q,r,s)と、(a[1],a[2],a[3],a[4]),(b[1],b[2],b[3],b[4])で張られる2次元ベクトル空間との距離の公式はどう書けるのでしょうか? 4次元空間の中の点(p,q,r,s)と、(a[1],a[2],a[3],a[4]),(b[1],b[2],b[3],b[4]),(c[1],c[2],c[3],c[4])で張られる3次元ベクトル空間との距離の公式はどう書けるのでしょうか? また、垂線の足の座標はどうなるのでしょうか? n次元ベクトル空間上の点をいくつかのパラメータを用いて表し、距離の2乗を偏微分したものが0ということから公式を導こうとしたのですが、うまくいきません。 どうかきれいに計算できた方は教えてくださいませ。

  • 3次元空間内の直線の方程式

    3次元空間内の直線の方程式の一般形は何でしょうか? 私の考えでは、2つの平面が交わった線として表すのでは ないかと思いますが、どうでしょうか?つまり aX+bY+cZ+d=0 eX+fY+gZ+h=0 いかがでしょうか?

  • 平面

    点(-1,1,2)を通り平面2x-y+3z-2=0に直交する平面の方程式は? 図もよくわかりません 1.x-y-z+4=0, 2.3x-9y+z+8=0 , 3.x-y-z-5=0 , 4.3x-9y-z+14=0 5. 3x+9y+z-8=0 から選ぶ問題です 答は1番のx-y-z+4=0です 面は、 a(x-α)+b(y-β)+c(z-γ)=0…(1)と表すことができ。 そして、これを展開して ax+by+cz-aα-bβ-cγ=0の -aα-bβ-cγを -aα-bβ-cγ=dとおき、 ax+by+cz+d=0…(2) 一般に、(1),(2)が平面の方程式 だそうですがどのように利用し、どうやって解くのかわかりません。 初心からおねがいします。

  • 空間図形の点と直線の距離の公式について

    xyz空間内の点P(p,q,r)から平面ax+by+cz=dにおろした垂線の長さを求めよ という問題(というか公式を示す証明)を見たときに、 (解) 平面ax+by+cz=dに垂直なベクトルのひとつを v→=(a,b,c) とする。平面ax+by+cz=d上にA(x0,y0,z0)をとると、求める長さは h=|AP→・v→|÷|v→| である。 (x0,y0,z0)がax0+by0+cz0=dを満たすことから、 h=|AP→・v→|÷|v→| =|(p-x0,q-y0,r-z0)・(a,b,c)|÷√(a^2+b^2+c^2) =|ap+bq+cr-d|÷√(a^2+b^2+c^2) となっていたのですが、どうしても h=|AP→・v→|÷|v→|である。 の部分が理解できません。検索して調べてみても分からず、結局内積とはなんだろう?と言うところまで調べてみたのですが、2つのベクトルがどれだけ似ているかを示す量、とだけ書いてあるくらいでさっぱり分かりません。 そこで、 (1)なぜ、hが上の式のようになるのでしょうか? (2)幾何学的な意味としては内積は何を表すものなのでしょうか? 以上2点、よろしくお願いいたします。

  • 4次元空間の4つのベクトルが張る空間が1次元、2次元、3次元、4次元である条件

    4次元空間にゼロベクトルでない4つのベクトルを考えます。 a↑=(a[1],a[2],a[3],a[4]) b↑=(b[1],b[2],b[3],b[4]) c↑=(c[1],c[2],c[3],c[4]) d↑=(d[1],d[2],d[3],d[4]) とします。 これらのベクトルで張られる空間が1次元、2次元、3次元、4次元である条件を求めたいのです。 各ベクトルを並べて行列(a↑ b↑ c↑ d↑)を作り、基本変形で階数を計算するというアルゴリズムではなく、各成分の代数的な関係を求めたいのです。 4つのベクトルで張られる空間が4次元のとき、超体積が0ではないので、行列式 |a↑ b↑ c↑ d↑|≠0 4つのベクトルで張られる空間が1次元のとき、すべて平行なので、 a↑∥b↑∥c↑∥d↑ a[1]:a[2]:a[3]:a[4]=b[1]:b[2]:b[3]:b[4]=c[1]:c[2]:c[3]:c[4]=d[1]:d[2]:d[3]:d[4] (a[1]/a[4],a[2]/a[4],a[3]/a[4])=(b[1]/b[4],b[2]/b[4],b[3]/b[4]) =(c[1]/c[4],c[2]/c[4],c[3]/c[4])=(d[1]/d[4],d[2]/d[4],d[3]/d[4]) このあと、一つの式にする、つまり、イコールを一つだけにしてきたいのですが、複雑そうです。行列式またはシグマ記号を使って、表記できないでしょうか? 4つのベクトルで張られる空間が2次元、3次元のとき、それぞれの各成分にはどういった関係式があるのでしょうか?

  • 4次元のベクトルpとqに対して、|p|*|q|*sinθはどのようにかける?

    2次元のベクトルp=(a,b)とベクトルq=(x,y)に対して、 なす角をθとすると、 |p|*|q|*cosθ=ax+by, |p|*|q|*sinθ=±(ay-bx) となります。 4次元のベクトルp=(a,b,c,d)とベクトルq=(x,y,z,w)に対しては、そのなす角θというものが、 |p|*|q|*cosθ=ax+by+cz+dw で定義されますが、このとき、 |p|*|q|*sinθ は成分を用いてどのようにかけるのでしょうか?

  • 線形代数の問題です

    3次元空間R^3の点をxyz座標を用いて縦ベクトル (ベクトルx)=(x,y,z) ∈R^3によって表示する 以下ではR^3内の二つの平面、α:z=0、 β:x+y+z=0への直交射影を考える。 以下の手順で平面βへの直交射影が次式で与えられることを示せ (1)点(ベクトルx)を通る直線:(ベクトルx)+t(ベクトルu) (t∈R) が平面βと直交したとする。このような(ベクトルu)を求めよ (2)(ベクトルx)から平面βへの垂線の足(ベクトルb)を求めよ この2問がどうしてもわかりません。 どなたかご回答よろしくお願いします