• ベストアンサー

平面

点(-1,1,2)を通り平面2x-y+3z-2=0に直交する平面の方程式は? 図もよくわかりません 1.x-y-z+4=0, 2.3x-9y+z+8=0 , 3.x-y-z-5=0 , 4.3x-9y-z+14=0 5. 3x+9y+z-8=0 から選ぶ問題です 答は1番のx-y-z+4=0です 面は、 a(x-α)+b(y-β)+c(z-γ)=0…(1)と表すことができ。 そして、これを展開して ax+by+cz-aα-bβ-cγ=0の -aα-bβ-cγを -aα-bβ-cγ=dとおき、 ax+by+cz+d=0…(2) 一般に、(1),(2)が平面の方程式 だそうですがどのように利用し、どうやって解くのかわかりません。 初心からおねがいします。

質問者が選んだベストアンサー

  • ベストアンサー
  • itochanda
  • ベストアンサー率36% (8/22)
回答No.2

選択肢が先にあるという前提で、その順序で回答しますね。(ある点を通りある平面に直交する平面は無限にあります) まず「点 (-1,1,2) を通り」とありますから、(-1,1,2)を代入して0にならない 2番,3番 は消します。 次に「直交」するので、法線ベクトルの内積を求めて答えが0になればいいです。 法線ベクトルは、x,y,z の係数を見ればよく、 2x-y+3z-2=0 の場合 (2,-1,3)になります。 1番 (2,-1,3)・(1,-1,-1)=2+1-3=0 4番 (2,-1,3)・(3,-9,-1)=6+9-2≠0 … ダメ 5番 (2,-1,3)・(3,9,1)=6-9+3=0 (アレ?1番だけじゃなくて5番も正解じゃ? 方針は合ってるはず、間違ってたらごめんなさい)

その他の回答 (2)

  • tarame
  • ベストアンサー率33% (67/198)
回答No.3

#1のtarameです。 1番が正解だということで、5番について確認を怠っていました。 itochandaさんのご回答のとおり、5番も成り立ってますね! お詫びして、訂正いたします。

  • tarame
  • ベストアンサー率33% (67/198)
回答No.1

まず、点(-1,1,2)を通ることから x=-1,y=1,z=2を代入して、成り立つものに絞り込みましょう。 2と3が成り立ちませんね。 次に、平面に垂直なベクトルに注目します。 平面2x-y+3z-2=0に垂直なベクトルは、u=(2,-1,3) 平面1,平面4,平面5に垂直なベクトルはそれぞれ u1=(1,-1,-1),u4=(3,-9,-1),u5=(3,9,1)ですから uと垂直なベクトルは、u1である(内積=0)から 条件をみたす平面は1であることがわかります。 空間における図形を考えるとき、ベクトルを利用することはとても大切なことです。

関連するQ&A

  • 平面の方程式を求める問題について

    平面の方程式を求める問題について 2つの平面2x+y+2z=5およびx+2y-3Z=1の交線を含み、平面3x-2y+z=5に垂直な平面の方程式を求めなさい という問題についてなのですが・・・・ 求める方程式を Ax+By+Cz+D=0において、3x-2y+z=5に垂直なので、3A-2B+C=0とおいて、前者2つの式の連立方程式を使って問題を解こうとしたところ詰まってしまいました。 どの様にすれば求められるのでしょうか?教えて下さい・・・

  • 3次元での点群に対する最小二乗法での平面の算出について(点と平面の距離

    3次元での点群に対する最小二乗法での平面の算出について(点と平面の距離。残差ではない。) -- 点と平面のZ軸方向の距離(残差)の二乗和を最小とする場合には、 平面をax+by+c=zとして、Σ(ax+by+c-z)^2をa,b,cのそれぞれで偏微分して それを=0とした連立方程式を解くことで解を得ることが出来ました。 また、式の形も、ある点のxとyを平面の式へ代入した際の値と、点のz値の差分を見ており、 簡単に納得のできるものとなりました。 これに対して、点と平面の距離(空間的な最小距離)の二乗和を最小とする場合には、 どのような流れで計算すれば良いのでしょうか? 点と平面の距離は|Ax+By+Cz+D| (A,B,Cは単位ベクトル)として求まりますが、 これをどう使うのかが分かりません。 Σ(Ax+By+Cz+D)^2をA,B,C,Dのそれぞれで偏微分して=0としても、 定数項が無いため、連立方程式の解がすべてゼロとなってしまいます。 強引に、Σ(A'x+B'y+C'z+1)^2として変形させて解いてみましたが、 得られたA',B',C'からA,B,C,Dに戻すと、Dがきちんと出ませんでした。(他についても怪しい。) こういった状況に迷い込んでしまい、どう考えるのが良いのか分からなくなってしまいました。 指南いただけませんでしょうか?

  • 4次元空間上での平面の式

    任意の点を(x,y,z,u)とした4次元空間で (1)3次元の立体を表す式は ax+by+cz+du=e でいいですか? (2)2次元の平面を表す式は一般にどのような形になりますか? 上記のことに疑問を持った理由。 2次元空間で1次元の直線を表す式は、一般にax+by=cとなる。 これは、2点(x,y),(xo,yo)を通り、方向ベクトルが(a',b')で媒介変数tとして x=a't+xo y=b't+yo と書くこともできる。 3次元空間で2次元の平面を表す式は、一般にax+by+cz=d となる。 これは、 平面上の2点(x,y,z)と(xo,yo,zo)を結ぶベクトルとこの平面に垂直な直線の方向ベクトル(a,b,c)の内積が0であるという条件より導かれる。 実際に計算すると a(x-xo)+b(y-yo)+c(z-zo)=0 ax+by+cz=axo+byo+czo になり、ax+by+cz=dという形と同値であることが確認できる。 【別な考え】 3次元空間内の平面は、異なる3つの点によって決定するので、異なる3点を P(xo,yo,zo)、Q(x1,y1,z1)、R(x2,y2,z2) とする。この平面上の任意の点X(x,y,z)は、媒介変数t,sを使って OX↑=OP↑+tPQ↑+sPR↑ と書ける。 成分表示にするために OP↑=(xo,yo,zo) PQ↑=(a,b,c) PR↑=(a',b'c') と方向ベクトルを定義すると、 x=xo+at+a's......(1) y=yo+bt+b's......(2) z=zo+ct+c's......(3) という書き方も平面を表す式である。 実際に(1)と(2)から未知数t,sについてx,yの式で表すことができるので、それを(3)式に代入すれば、(1)(2)(3)式は、一つの式 a"x+b"y+c"z=d'という形になる。 直線を表す式は、媒介変数tを使って x=at+xo y=bt+yo z=ct+zo または、 (x-xo)/a=(y-yo)/b=(z-zo)/c=t となる。 4次元空間で同じように、 直線や平面や立体を考えてみた。 2次元では、(1,0)と(0,1)が直交の基底ベクトル。 3次元では、(1,0,0)と(0,1,0)と(0,0,1)が直交の基底ベクトル。 したがって、 4次元では、(1,0,0,0)と(0,1,0,0)と(0,0,1,0)と(0,0,0,1)が直交の基底ベクトル。 4次元空間では、点は4つの成分で表される。 4次元空間での直線について。 直線は2点が与えられば書ける。 2点(x,y,z,u)と(xo,yo,zo,uo)を通り、その直線の方向ベクトルが(a,b,c,d)だとしたら、媒介変数tを使って、 x=at+xo y=bt+yo z=ct+zo u=dt+uo となって (x-xo)/a=(y-yo)/b=(z-zo)/c=(u-uo)/d=t 次に4次元空間での3次元立体について。 2次元空間では、それより一つ次数が低い1次元の直線は一つの式 ax+by=c で与えられた。 3次元空間では、それより一つ次数の低い2次元の平面は、一つ式 ax+by+cz=d で表さられた。 したがって、4次元空間では、それより一つ次数の低い3次元の立体は、 ax+by+cz+du=e で表されるだろう。 【別な考え】 4次元空間では、ある方向ベクトル(a,b,c,d)に直交する立体は一つしかない。なぜなら、4次元空間での基底ベクトルは4つで空間(立体)は3つの基底ベクトルで決定されて、残り一つが残っているからだ。 立体上の2点(x,y,z,u)と(xo,yo,zo,uo)を結ぶベクトルとこの立体に垂直な直線の方向ベクトル(a,b,c,d)の内積が0であるという条件で計算すると a(x-xo)+b(y-yo)+c(z-zo)+d(u-uo)= 0 ax+by+cz+du=axo+byo+czo+duo になり、ax+by+cz+du=eという形になる。 2次元の平面はどうだろうか? (ここからが本題) 4次元空間では、ある方向ベクトル(a,b,c,d)に直交する平面は、2つあるはずだ。 なぜなら、4次元空間での基底ベクトルは4つで平面は2つの基底ベクトルで決定されて、残り2つが残っていて、それはこの平面に直交するように選べるからだ。 平面は、異なる3つの点によって決定するので、異なる3点を P(xo,yo,zo,uo)、Q(x1,y1,z1,u1)、R(x2,y2,z2,u2)、 とする。この平面上の任意の点X(x,y,z,u)は、媒介変数t,sを使って OX↑=OP↑+tPQ↑+sPR↑ と書ける。 成分表示にするために OP↑=(xo,yo,zo,uo) PQ↑=(a,b,c,d) PR↑=(a',b',c',d') と方向ベクトルを定義すると、 x=xo+at+a's......(1) y=yo+bt+b's......(2) z=zo+ct+c's......(3) u=uo+dt+d's.....(4) という書き方も平面を表す式である。 (1)と(2)を連立して、未知数t,sについてx,yの式で表すことができるので、それを(3)式と(4)式代入すれば、(1)(2)(3)(4)式は、2つの式 a"x+b"y+c"z+d"u=e' a"'x+b"'y+c"'z+d"'u=e" になる。 この2つの式からuを消去すれば、結局、 Ax+By+Cz=D という形になる。 zを消去すれば、 Ax+By+Cu=D yを消去すれば、 Ax+Bu+Cz=D xを消去すれば、 Au+By+Cz=D

  • 平面方程式について

    平面方程式について教えてください。 平面方程式はax+by+cz+d=0で教科書には書いてあるのですが ウェブで検索するとz=ax+by+cと書いてありました。 これはなぜなのでしょうか?? どのように変形したらいいのでしょうか? 教えてください お願いします

  • 平面上 点の移動

    平面A(ax+by+cz+d=0)上に点P(X1,Y1,Z1)が存在して、 この点Pが、平面Aを基準とした、平面上にある直線B(a1x+b1y+c1z+d1=0)に沿って距離Lを移動した先の 座標値(X2,Y2,Z2)を計算したいのですが、どのように計算したら良いのでしょうか? よろしくお願いいたします。

  • 三次元ユークリッド空間上の直線の方程式は?

    三次元ユークリッド空間上で,直交座標を x, y, z とする時, 任意の平面は,a, b, c, d を実数として(abc ≠ 0), ax + by + cz + d = 0 で表されます. では,三次元ユークリッド空間上の任意の或る一つの直線の方程式は, 直交座標を x, y, z とする時,一般的に,どの様に表現されるのでしょうか? どなたか,教えて下さい.

  • 球面の方程式の一般形

    球面の方程式は、(x-a)^2+(y-b)^2 +(Z-C)^2=r^2を展開して整理すると x^2+y^2+z^2-2ax-2by-2cz+a^2+b^2+c^2-r^2=0  ここで。-2a=A -2b=B -2c=C a^2+b^2+c^2-r^2=0 とおくと x^2+y^2+z^2+Ax+By+Cz+D=0…(1) ただし、a^2+b^2+c^2-D=A^2/4+ B^2/4 +C^2/4 -D=r^2>0  からA^2+B^2+C^2-4D>0…(2) (2)の条件のもとで、(1)を球面の方程式の一般形とよぶことがある。 とあるのですが。 「ただし」のあとの a^2+b^2+c^2-D=A^2/4+ B^2/4 +C^2/4 -D のところがわかりません。 どことどこの式を用いてこの式が得られたのか、 つながりをおしえてほしいです よろしくお願いいたします。

  • 3次元の平面と対称点の問題を教えて下さい。

    この問題です。 A(3,1,0),B(0,1,-1),C(8,0,1)∊R³を(通る平面Πは原点を通らないので、 {(x,y,z)∊R³|ax+by+cz=5}と表わすことができる (1)a,b,cを求めよ。 (2)X(-3,3,4)のΠに関する対称点Y=Sπ(X)の座標を求めなさい という問題です。 解いたのですが、あっているか確認お願いいたします (1) ax+by+cz=5にA、B、Cを代入し3つの式を連立 a=1、b=2、c=-3 (2) 移動した対称点の座標をX'とする。X=(-3,3,4)、a=(1,2,-3)、d=5とおくと X'=X-((2a・x-2d)/(a・a))・a より、 X'=(-1,7,-2) となる。

  • 平面方程式について

    直線の方程式は y=ax+bで aは傾き、bはy軸との切片というのはわかるのですが 平面方程式の z=ax+by+c のa,b,cは何を表しているのでしょうか? ご存知の方教えていただけないでしょうか?

  • 平面の式と逆行列

    3点(0,2,2) (-2,0,0) (0,-2,-2次に)通る平面を求めました。 平面の式 ax+by+cz=0 にそれぞれ代入しa,b,c,dの連立方程式として求め、 2b+2c+d=0 -2a+d=0 -2b-2c+d=0 答えy-z=0 を得ました。次に、簡単化のため逆行列でa,b,cをdの式で求めようとしたところ、なんと行列式がゼロとなり求められません。 なぜ?直線上にない3点が定まれば平面が一意に定まり、当然逆行列も存在すると思ってましたが、違うのですか?また、この場合どうやって求めたらいいでしょうか?もちろんて計算ではなく自動計算化を考えてのことです。