• ベストアンサー
  • すぐに回答を!

円の面積より積分の結果を求める

通常、√a^2-x^2の積分は x=asinΘと置いて置換積分を行うと答えが出ますよね? でも式を二乗してx^2+y^2=r^2という形にすると秒殺で計算ができると教えてもらいました。 そこで質問です。 積分区間が0⇒1/2のとき √(1/2)-x^2という式の場合でもその円の面積として考えて簡単に出せるのでしょうか? 区間が0⇒1/√2なら円の面積から1/4倍すればいいだけだと思うのですが積分区間が半径と異なってしまう場合は結局面倒なのでしょうか? どうやって上記の式を円の面積と捉えて計算すればいいのかわからず質問しました。 この場合の計算式はどうなるのかお教えいただければ幸いです。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • MSZ006
  • ベストアンサー率38% (390/1011)

今回のケースだと、 x=1/2のときy=1/2となって、中心角45度の扇形を考えると図形的に面積が計算できます。 π/2*(1/4)-{π/2*(1/8)-1/8}

共感・感謝の気持ちを伝えよう!

質問者からのお礼

非常にわかりやすい説明と式のご提示ありがとうございました!!!! 式を書いていただいたおかげで、 1/4の円の面積から1/8の円の面積から一遍1/2の二等辺三角形の面積を引くことで目的の面積が得られるということがわかりすっきりしました。 本当にありがとうございました。 またご指導よろしくお願い申し上げます。

その他の回答 (1)

  • 回答No.2

参考 URL / 円の面積を積分で計算する2通りの方法 にある「別解:極座標で計算する方法」が「秒殺」なのじゃありませんか?   

参考URL:
https://mathwords.net/enmensekibun

共感・感謝の気持ちを伝えよう!

質問者からのお礼

リファレンスの追記までしてくださりありがとうございました。 お陰様で理解できました

関連するQ&A

  • 円と直線が囲む面積の積分(確率)

    「xy平面上で, x^2+y^2 ≦ 4 (x≧0, y≧0)を満たす任意の点(a,b)を選んだとき, aとbの和が√6以上となる確率はいくらか」 以上の問題の導出過程が分かりません。 x≧0, y≧0なので,  y=√(4-x^2) y= -x+√6 の2式に囲まれる面積Sを「半径2の円を4等分した面積」(=π)で割った値になると考えました。 2式から2つの交点を求めれば, S=∫{√(4-x^2)- (-x+√6)}dx というふうにSを求められるかと思います。ところが、この後の導出が分かりません。 この場合、円座標系に置換しても複雑になるだけですよね? 1項目の積分はどのように処理すればよろしいでしょうか。 それとも、もっと簡単な計算方法があるのでしょうか? アドバイスよろしくおねがいします。

  • 定積分における符号付き面積

    前の質問に関連した質問です。 定積分の値が負になる時これを『符号付き面積』と呼ぶのでしょうか。 例えば∮(1→3)(-x^2)dx=-8となって負の値になります。 しかし教科書にa≦x≦bの範囲で、y=f(x)とx軸で挟まれる図形の面積はf(x)≦0の場合、y=f(x)はx軸の下側にあるので面積は∮の前にマイナスを付けてS=- ∮(a→b)f(x)dxと表されるとあります。 これを上のy=-x^2, (積分区間1~3)の例で試すと、S=-∮(1→3)(-x^2)dx=-(-8)=8となり正の値になります。 ここで混乱してしまったのですが、つまり定積分によって面積を求める場合は値は必ず正になりますが、普通に定積分する際には値が負の値をとる事もあり、これを『符号付き面積』とも呼ぶという事でしょうか。 一つ前の質問で挙げた、|∮(a→b)f(x)dx|≦∮(a→b)|f(x)|dxという不等式についてですが、左辺についてこのf(x)がプラスの区間とマイナスの区間を含む場合、この不等式においてはそれぞれの区間を普通に積分するという意味で、各区間の面積を求めて合計する訳ではないですよね。 もしそうなら、f(x)がマイナスの区間の面積も正の値で出てくるはずなので、両辺がイコールになると思うのですが。 自分の勘違いしている所もありそうですので、その場合ご指摘ください。

  • 積分を用いた円の面積公式の証明について

    中心角θ、二辺の長さがrである二等辺三角形を用いて、半径rの円の面積S(厳密には内接する正多角形の面積の極限?)を求めようとしています。 dS=r^2/2×sin(dθ) である微小三角形を定義し、それを区間[0,2π]で積分することで、S=r^2/2×∫sin(dθ) を求めたいのですが、この積分が解けません。 この積分を解いていただけないでしょうか? また、このような微小三角形を並べることによる円の面積公式の証明は妥当なものでしょうか? よろしくお願いします。

  • 円周率πを知らなくても円の面積は積分で算出できる?

    三角関数や置換積分を知っているひとが、円の面積を計算するにあたってラジアンを自分で考えだせる可能性もあるでしょうか。

  • 球の表面積と円の面積

    球の表面積や円の面積を積分により求める場合、パラメータの取り方によって計算結果が変わってきます(添付画像参照)。球の表面積の場合は関数f(x)=√(r^2-x^2)の長さLを、円の面積の場合はxをパラメータにとると正しい計算結果が得られるようですが、なぜ似たような図形であるにも関わらずこのようにパラメータの取り方が違ってくるのでしょうか。 ("似たような"という表現は些か数学的ではないですがご容赦ください) ちなみに球の体積を積分で求めたい場合は、xをパラメータに取るとV=(4πr^3)/3が得られるようです。

  • 円と線で囲まれた部分の面積

    久しく数学から離れていて忘れてしまったのですが 円の上を線が横切っていて、それで囲まれた部分の面積を求めたいのです。うまく説明できないですが積分で計算できた気がするのですが…(自信は全くありません) 例えばy=2x+3の直線が原点を中心にした半径12の円を切りとる面積をどうやって求めればいいでしょう?

  • 円関連の面積

    図のような半径2の半円があり、円の中心Oから直径に対して垂線を引き、円弧と交わる。 OA=1、OB=√2のとき、斜線部分の面積を求める問題なんです。 2つの弦は直径と平行です。 初級公務員試験の模擬試験問題なんですが、定積分を使わずに解く法方がわかりません。 なお定積分(置換積分)にて、解答は1+π/6 - √3/2 となり、正解だとわかっています。 積分を使わずに、計算可能なのでしょうか? よろしくお願いします。

  • 球の表面積・体積

    高校生のものです。 球の問題を解いているときに、球の表面積の公式を忘れてしまったので自力で出そうとしました。 球の半径をrとすると、球の表面積は4πr^2です。 僕は積分して解こうと考えました。 まず球をまっすぐスライスして(たまねぎみたいに)そのときの円の半径をaとでもしてその円周を積分区間rから0までして2倍にしました。 すると2∫(2πa)da=2πr^2となって本来のものの半分になります。 同様に体積も円の面積をだして積分すると半分の値になってしまいます。 どこにまずいところがあるのでしょうか?

  • 定積分と面積・・

    「曲線C:x^3-x^2とCに接する異なる直線L,Mがある。CとLとで囲まれた部分の面積と、CとMとで囲まれた部分の面積とが等しいとき、LとMとは平行であることを示せ」という問題の解説で「f(x)=x^3-x^2とおくとf'(x)=3x^2-2xであるから曲線C上の点(α,α^3-α^2)における接線の方程式はy=(3α^2-2α)(x-α)+α^3-α^2 ∴y=(3α^2-2α)x-2α^3+α^2この右辺をg(x)とおくと、f(x)-g(x)=x^3-x^2-(3α^2-2α)x+2α^3-α^2=(x-α)^2(x+2α-1) β=1-2αとおくと f(x)-g(x)=(x-α)^2(x-β) でえあり、CとLとで囲まれた部分の面積S1は β≦αのとき、S1=∫{f(x)-g(x)}dx (定積分の区間は下端β、上端α)  α≦βのとき、S1=∫{g(x)-f(x)}dx (定積分の区間は下端α、上端β)・・・・・」と続いていくのですが「CとLとで囲まれた部分の面積S1は β≦αのとき、S1=∫{f(x)-g(x)}dx (定積分の区間は下端β、上端α)  α≦βのとき、S1=∫{g(x)-f(x)}dx (定積分の区間は下端α、上端β)」のところのいみがわかりません・・  教えてください!!

  • 定積分を求めようとしています。

    定積分を求めようとしています。 S(1-0){ x^2・(1-x^2)^1/2}dx を求めようとしています。(分かりづらいですが、区間1-0におけるx^2・(1-x^2)^1/2の積分) 部分積分や置換積分など色々使って計算したのですが、 手元の計算では、 積分結果が -2/3(1-x^2)^3/2 + 2/15(1-x)^5/2*1/2xとなって、分母にxが出てしまい、 結果値は∞と発散してしまいます。 多分単純な計算ミスだと思うのですが、計算方法をご教授願います。