• 締切
  • 困ってます

三角形の面積の例題にて

  • 質問No.9467261
  • 閲覧数42
  • ありがとう数0
  • 気になる数0
  • 回答数3
  • コメント数0
 頂点がAの三角形ABCがある。
∠Aの二等分線と辺BCの交点をDとするとき、線分ADの長さを求めよ。
 ただし、AB=4 AC=6、∠BAD=60°∠CAD=60°とする。

 という例問題で、

  1/2×4×AD×sin60°+ 1/2×6×AD×sin60°=1/2×4×6×sin120°

ここで、sin60°=sin120°=2√3だから、4×AD+6×AD=4×6

よって、AD=24/10=12/5

 ‥の「ここで、」から、解らなくなっています。

 確かにsin120°=2√3ですが、4×AD+6×AD=4×6の式がどう成立して出来たのか、考えが及びません。sin120°は何に消されて、どうして=4×6なのでしょうか‥

回答 (全3件)

  • 回答No.3
こんな問題は、ドラフターで図面を描いた経験がある昔人間なら、フリーハンドでマンガ絵を
描きます。
そして、三角形の面積なら∠Aである120°を二等分して60°と60°にする記述で、ピ~ンと
きて、直角三角形30°&60°は1:2:√3の辺長さ構成になるで計算すると考えます。
すると、△ABDの面積 + △ADCの面積 = △ABCの面積計算に関しては、
先ず、△ABDの面積は、点BからADへ垂線を下ろし交わった点までの長さが“高さ”となり、
その高さは、1:2:√3を利用して、2:√3=4(AB):2√3(高さ)となり、底辺×高さ÷2
がAD×2√3×1/2となります。
次に、△ADCの面積は、点CからADのD側に延長した線へ垂線を下ろし交わった点までの長さが
“高さ”となり、その高さは、1:2:√3を利用して、2:√3=6(AC):3√3(高さ)となり、
底辺×高さ÷2がAD×3√3×1/2となります。
最後に、△ABCの面積は、点BからACのA側に延長した線へ垂線を下ろし交わった点までの長さが
“高さ”となり、その高さは、1:2:√3を利用して、2:√3=4(AB):2√3(高さ)となり、
底辺×高さ÷2がAC×2√3×1/2となり、AC=6なので6×2√3×1/2となります。
以上を纏めると、、△ABDの面積 + △ADCの面積 = △ABCの面積計算は、
AD×2√3×1/2 + AD×3√3×1/2 = 6×2√3×1/2で、今一度マンガ絵を見ると
△ABD面積の2√3は4(AB)×sin60°で、△ADC面積の3√3は6(AC)×sin60°で、△ABC面積は
4(AB)×sin60°です。(小生は、マンガ絵から△ABC面積の高さはAC×sin60°としますが、
例題は4(AB)×sin120°としているのですね。でも、sin60°=sin120°です)
因って、
AD×(4×sin60°)×1/2 + AD×(6×sin60°)×1/2 = 6×(4×sin60°)×1/2は、
1/2×sin60°×(4×AD+6×AD)= 1/2×sin60°×4×6となり、
1/2×sin60°×(4×AD+6×AD)÷(1/2×sin60°)= 1/2×sin60°×4×6÷(1/2×sin60°)
と処理して、4×AD+6×AD=4×6の式が成立します。

やたらsinやcos、tanの三角関数を使用して計算すると、計算ミスやtanを使用する処を
sinを使用する使用ミスをします。
設計や製図を志す方は、やはりマンガ絵を描く習慣を身に付けた方が、ミスが減ります。
また、客先打ち合わせ時等のスケッチが上手になります。

                 A
                 ・
               ・     ・
             ・        ・
           ・             ・
        B ・                  ・
                 D ・          ・
                               ・ C
    ・・・・・・・が垂線     ↓
           
            ・
             ・ A
           ・    ・
               ・     ・
          ・   ・        ・
         ・ ・             ・
        B ・・・・・・・・・・・・・・・・・・          ・
                 D ・          ・
                  ・・・・・・・・・・・・・・・・・・・・・・・・・ C
のような図です。
  • 回答No.2
そもそも定義が違うような。

sin60°=sin120°=(√3)/2

ですよね。その面積から求めた関係式に,sin60°=sin120°=2√3
を代入してみて下さい。確かに,4×AD+6×AD=4×6になります。

結果的にはsin60°=sin120°であるため,ADを計算するときには関係なくなってしまいますが,∠Aが二等分されていなければ,全く違うこたえが出て来ますよ。
  • 回答No.1
>1/2×4×AD×sin60°+ 1/2×6×AD×sin60°=1/2×4×6×sin120°
(?ABDの面積 + ?ADCの面積 = ?ABCの面積)

1/2×sin60°×4×AD+ 1/2×sin60°×6×AD=1/2×sin120°×4×6

1/2×sin60°×(4×AD+6×AD)=1/2×sin120°×(4×6)

(1/2×2√3)×(4×AD+6×AD)=(1/2×2√3)×(4×6)

4×AD+6×AD=4×6

ということと思います。

回答(2)さん、御指摘ありがとうございます。
見落としていました。
補足コメント
noname#230358
 すみません。写し間違えで、sin60°= sin120°= √3/2です。

 早速、ご指摘の通り√3/2を sin60°及び sin120°に代入してみました。

 両辺を1/2×√3/2で割ってADの値を算出できるよう変形させてたのですね。
投稿日時:2010/03/28 23:26
結果を報告する
このQ&Aにはまだコメントがありません。
あなたの思ったこと、知っていることをここにコメントしてみましょう。
AIエージェント「あい」

こんにちは。AIエージェントの「あい」です。
あなたの悩みに、OKWAVE 3,600万件のQ&Aを分析して最適な回答をご提案します。

関連するQ&A

その他の関連するQ&Aをキーワードで探す

ピックアップ

ページ先頭へ