• 締切済み
  • 困ってます

単振り子の問題

単振り子の長さlで、垂直方向からθの角度で手を離すと、張力をTとすると、最下端での鉛直方向の運動方程式は、F=mα=T-mg=mv^2/l・・・(1)、水平方向の運動方程式は、mα=-mgsinθ・・・(2)ですね。垂直方向のαと水平方向のαは同じものなのでしょうか。これらを区別して書いている教科書は見当たりません。方向が90°違うので、区別すべきだと思うのですが。高校レベルです。よろしくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数4
  • 閲覧数302
  • ありがとう数0

みんなの回答

  • 回答No.4
  • matelin
  • ベストアンサー率64% (20/31)

最下点付近における おもりの運動方程式は、 加速度の半径方向成分を ar とし、接線成分を at とすれば、  半径方向の運動方程式は m×ar = T- mgcosθ …(1)  接線方向の運動方程式は m×at = mgsinθ …(2) です。そして、おもりが円運動していることより、  ar=v^2 / l …(3) が、常に成り立ちます。  この(3)式は(1)や(2)から導ける式ではなく、  物体が円運動しているという条件から導ける式です。  (2)より at = gsinθ   (3)より ar=v^2 / l この ar とat は、同じになる必然性はありません。全く異なる別の量です。 at は おもりを加速したり減速したりする働きをします。 ar は おもりが円軌道上を運動する働きをするのです。

共感・感謝の気持ちを伝えよう!

  • 回答No.3

仰せのとおり私も1式と2式のαは別物のような気がします。 半径方向 動径方向 (radial direction)はαr 接線方向 (tangential direction)はαt などとするのが良いかと思います。 >これらを区別して書いている教科書は見当たりません。 なぜなのかよくわかりません。 動径方向の加速度と半径方向の加速度を同時に考えている場面が無かったからかもしれませんね。

共感・感謝の気持ちを伝えよう!

  • 回答No.2
  • matelin
  • ベストアンサー率64% (20/31)

回答No1さんのおっしゃるとおりです。 補足すると、最下点での運動方程式は、鉛直方向はあなたの書いている(1)で正しいですが、水平方向の運動方程式は、ma=0 です。あなたの書いている(2)式において、最下点では θ=0 であることに注意してください。 まとめると、最下点での加速度は、鉛直成分は v^2/l であり、水平成分は 0 です。

共感・感謝の気持ちを伝えよう!

  • 回答No.1

最下端では単振り子に水平方向の力は働かないかと。 したがって、加速度も水平成分は0のはずなので、最下端での加速度の水平成分を考えることがほとんどないために、「これらを区別して書いている教科書は見当たりません。」という事になるのではないかと思います。

共感・感謝の気持ちを伝えよう!

質問者からの補足

yougamaster様 有難うございます。質問がよくなかったので、 「最下端」を「最下端近く」に変更します。 最下端近くでの半径方向の運動方程式は、F=mα=T-mgcosθ=mv^2/l・(1)、水平方向の運動方程式は、mα=-mgsinθ・・(2)ですね。垂直方向のαと水平方向のαは同じものなのでしょうか。方向が90°違うので、区別すべきだと思うのですが。

関連するQ&A

  • 単振り子の問題

    単振り子の長さlで、垂直方向からθの角度で手を離すと、張力をTとすると、最下端での運動方程式は、F=mα=T-mg=mv^2/l・・・(1)、エネルギー保存の法則で1/2mv^2=mgl(1-cosθ)ですね。従って、張力T=(3-2cosθ)mgになると思います。 ところが、周期を求める時は、張力Tを無視?してmg=mrω^2=mlω^2・・・(2)から、ωを求めてから、周期=2π/ωで求めます。(1)と(2)の違いはなんでしょうか。 もしも、(2)が成り立てば、(1)でT=0になってしまいそうな気がします。 よろしくお願いします。

  • 振り子の運動について

    図のような振り子の運動で、物体がある高さまで上がった時、糸がたるんだとします。 その時のθの値をθmaxとした時、そのθmaxを求める問題です。 (Lは糸の長さ、Tは糸の張力、V0は接線方向の初速度です) 自分で解いて見たのですが、自信がないので、答案が合っているかどうか見ていただけないでしょうか。 まず、運動方程式を立てると θ方向:mLθ"=-mgsinθ L方向:mV^2/L=T-mgcosθ (Vは接線方向の速度) となり、さらにエネルギー保存則により 1/2(mV^2)+mgL(1-cosθ)=1/2(mV0^2) これをL方向の運動方程式に代入すると cosθ=(2gL-V0^2)/3gL+T/3gm ここで、糸がたるむということはT=0ということなので cosθ=(2gL-V0^2)/3gL よってθ=arccos(2gL-V0^2)/3gL このような解き方で合っているでしょうか。  

  • 単振り子

    単振り子の運動方程式をエネルギー保存則から導け 単振り子は糸の長さがLで先についているおもりの重さがm糸の張力がT 重力加速度がgで速さがV糸と鉛直方向の角度がθです 宜しくお願いします

  • 単振り子と円運動

    単振り子と円運動の問題を解いていて、ちょっと混乱してしまいました。 円運動において角速度ω=dφ/dtは角度の時間変化ですよね。 単振り子の接線方向の運動方程式は、 mldφ"=-mgsinφと書けますが、なぜ角速度ωで 書き表さないのでしょうか。 よろしくお願いします。

  • 円錐ばね振り子

    高校物理円錐ばね振り子の問題です。  バネと視点の高さ h のなす角をθ、バネの伸びを x、垂直抗力を N としたとき   r = (L+x)sinθ   h = (L+x)cosθ  水平方向の運動方程式は   mrω^2 = kxsinθ なので   m(L+x)sinθω^2 = kxsinθ   m(L+x)ω^2 = kx   ω^2 = kx/m(L+x)  鉛直方向の運動方程式は   mg-N = kxcosθ   N = kxcosθ + mg    = kx・h/(L+x) ここで行き詰まってしまいました。

  • 一定の加速度で運動する振り子の周期について

    ひもの長さがLで振り幅が十分に小さい振り子が、水平方向に加速度Aで進んでいる状況を考えています。 重力加速度と振り子の加速度のベクトルの和をとって、それを見かけの重力加速度として考え、周期T=2π√(L/√(g^2+A^2))というのは分かります。 しかし、運動方程式を立てて周期を求めると、加速度がない場合と同じでT=2π√(L/g)になってしまいます。 運動方程式は、振り子の質量をm、ひもが鉛直方向と作る角をθ、最下点を原点として水平方向にx軸をとり、振り子の変位をx1、近似sinθ≒x/L、cosθ≒1を使って、 ma = -mg・sinθ-mA・cosθ   ≒-mgx1/L-mA a = -g/L(x1 + LA/g) a = -ω^2・xと比較して、周期はT=2π√(L/g)、単振動の中心はx=-LA/gになるのですが、どこが間違っているのでしょうか?

  • 単振り子の運動方程式

    重力加速度g、質量m、紐の長さl、空気抵抗無視。 単振り子の運動方程式はこうなりますよね。 mlθ"=-mgsinθ これがよくわからないのです。 どういう座標系についての運動方程式なのですか? 軌道にそってx軸を定めると θl=x mx"=-mgsinθ  軌道に沿った運動方程式? ⇔mlθ"=-mgsinθ  どういう座標系の運動方程式なの? そしてこれの一般解はどういう風になりますか? 初期条件としてt=0でθ=φとします。

  • 力学 振り子

    【問題】質量mのおもりと長さaの振り子を作る。この振り子は、鉛直平面内で自由に 回転できる(上に壁があるわけではない)。摩擦は無視できるものとする。 問題(A)座標系を適当に設定して運動方程式をたてよ。なお、鉛直線に対する 振り子の角度θとする。他に必要な記号があれば自分で設定すること。 問題(B)時刻t=t0において、おもりは最下点にあり、速さVで運動を開始した とする。このVの値が小さければ振り子は往復運動をおこない、大きければ 大車輪のような回転運動をおこなう。両者の境目となるVの値を求めよ。 この値をVsとする。 問題(C)ちょうどV=Vsとした場合について、運動方程式の解を求め、 角度θの時間変化を図示せよ。長時間経過後の漸近的な挙動に注意すること。 【考えたこと】 問題(A)ma(d^2θ/dt^2)=-mgsinθ 問題(B)力学的エネルギー保存の法則を定式化して、おもりが頂点に来たとき速度0、最下点に来たとき速度Vsとなる 問題(C)力学的エネルギー保存則の式を微分方程式として解く θとtの変数分離形で解けない。 (B)と(C)がここまでしか分からないです。

  • 単振り子の問題

    原点Oのまわりに自由に回転できる、長さdのひもに質量mの質点と 見なせる小さい物体をつるした単振り子がある。 物体の位置Pは静止したつりあいの位置R0 (回転によってできる円の真下)からのひものなす角度θとし、 反時計回りを正とする。時刻t=0で、つり合いの位置R0において 水平方向にエネルギーを与えて単振り子を振動させる。 この単振り子はどの位置においてもひもの長さはdを保つ。 重力加速度をg、原点Oのまわりの慣性モーメントをIとする。 (1)点Oのまわりんの慣性モーメントIを求める。 (2)物体がつり合いの位置の真上Raに達するためのエネルギーを求める。 (3)与えるエネルギーが十分小さいときの物体の位置および 角周波数ω0を求める。 (4)物体の運動を支配する運動方程式を求める。 (5)θとdθ/dtの関係を表すグラフの書き方。 (4)は、糸の方向に働いている糸の張力Tsと重力の糸の方向の成分 はつりあっているので Ts=mgcosθ がまず成り立ち、次に糸に垂直な方向では、重力の分力-mgsinθ=F のために加速度a=-gsinθを生じますよね? そして、弧PR0の長さをxで表すと ma=-mgsinθ d^2x/dt^2 = a = -gsinθ ⇔x=gsinθ ・・・・ これからどうすればいいのか迷ってます。 助けてください。

  • 振り子の位置エネルギー

    振り子(糸の長さL ,質量m)の単振り子がある。 (1)60度まで持ち上げたときの位置エネルギーを求めよ。 (2)振り子のなす角が(θ<60°)の時の角運動量と原点Oまわりでの力のモーメントを求めよ (3)耐久力が2mgの糸であるとき、この振り子にこの運動をさせると糸は切れるか? (4)最下点でのおもりの速さと糸にかかる張力を求めよ (5)αで上昇するエレベーター内で同じ運動をさせたとき、糸は切れるか? という問題がありました。 そもそも振り子で近似を使って復元力F=-mgsinθから近似して mα=-mgsinθ sinθをθと近似 mα=-mgθ θ=xl よってα= -(g/l)x ということは初等物理で勉強したのですが 位置エネルギーはどのように出すのでしょうか。 そもそも60度は微小な角ではないので近似した式を用いて積分してポテンシャルを出すということもなんかしっくりこなくて困っています。 大変な作業ですがお時間がございましたら是非教えてください。