- 締切済み
電磁気学の問題で分からない問題があります。
電磁気学の問題で分からない問題があります。 ある空間に電流密度分布ベクトルJ(r,φ,z)=(5/2)×(r^2 -1)k [A/m^2]が存在する。 ここでr[m],φ[rad],z[m]は円柱座標系の座標関係を示しkはz軸方向の単位ベクトルである。この時r=√2[m]における磁界ベクトルを円柱座標系で求めよ。ただし、φ[m],z[m]の座標は任意とする。 解き方も含めて教えていただけると嬉しいです。よろしくお願いします
- みんなの回答 (1)
- 専門家の回答
みんなの回答
- kiyos06
- ベストアンサー率82% (64/78)
回答No.1
0)電流Jはz方向のみ。 0.1)z方向に一定(Jはrのみの関数) 0.2)φ変化で一定(〃) 1)磁界Hはφ方向のみ。 1.1)φの右ネジ方向にz(の正方向)を取る。 1.2)z方向(k)の電流が正の時φ方向(j)の磁界Hが正 1.3)Hはrのみの関数(Jはrのみの関数) 2) ∫ [0,rs] ∫ [0,2π] J(r) r dφ dr =2π rs H 3)k1 ∫ [0,rs] ∫ [0,2π] (r^2 -1) r dφ dr =2π rs H 4)H =k2/rs ∫ [0,rs] ∫ [0,2π] (r^2 -1) r dφ dr 5)H(rs) =k3/rs ∫ [0,rs] (r^2 -1) r dr 6)H(ベクトル) =H( sqrt(2) ) j