• ベストアンサー

次の関数論の問題の解答解説をお願いします。

全領域で正則な関数f(z)=u(x,y)+iv(x,y)について(z=x+iyでx,y,u(x,y),v(x,y)は実数である), 1.z平面上の任意の閉曲線Cに沿ってのf(z)の1周積分は常に0になることを証明せよ。 2.z平面上の任意の点Aから点Bまでのf(z)の複素積分が積分経路に依存しないことを証明せよ。

質問者が選んだベストアンサー

  • ベストアンサー
  • jcpmutura
  • ベストアンサー率84% (311/366)
回答No.1

1.コーシーの積分定理 単純閉曲線Cに囲まれる領域をDとすると ∫_{C}f(z)dz =∫_{C}{u(x,y)+iv(x,y)}(dx+idy) =∫_{C}(udx-vdy)+i∫_{C}(udy+vdx) ↓グリーンの定理から =-∬_{D}(v_x+u_y)dxdy+i∬_{D}(u_x-v_y)dxdy ↓f(z)が正則だからコーシーリーマンの関係式から ↓u_x=v_y ↓v_x=-u_y ↓だから =0 ∴ z平面上の任意の閉曲線Cに沿ってのf(z)の1周積分は常に0になる 2. 図のように z平面上の任意の点Aから点Bまでのf(z)の積分経路をC_1,C_2として f(z)を 点AからC_1の経路で点Bまで積分し 点BからC_2の逆(-C_2)の経路で点Aまで積分する 経路をCとすると(1.コーシーの積分定理)から ∫_{C}f(z)dz=0 ところが ∫_{C}f(z)dz=∫_{C_1}f(z)dz-∫_{C_2}f(z)dz だから ∫_{C_1}f(z)dz=∫_{C_2}f(z)dz ∴ z平面上の任意の点Aから点Bまでのf(z)の複素積分が積分経路に依存しない

sironekoudon
質問者

お礼

分かりやすくありがとうございました

関連するQ&A

  • 複素関数の問題です。

    複素関数の問題です。 複素関数の問題で分からない問題があって困っています。 【問題】 F(z)=u(x,y)+iv(x,y), z=x+iy において u(x,y)=a, v(x,y)=b で表される曲線をxy平面上に描いたとき、それらの交点においてF´(z)≠0であれば、その交点における各曲線に対する接戦が互いに直交することをコーシー・リーマンの関係式を用いて示せ。ただしF´(z)はF(z)の導関数であり、関数u(x,y)の点(x,y)での微分は、 du=(∂u/∂x)dx+(∂u/∂y)dy で与えられる。 わかる方がいれば、どうか教えていただけないでしょうか? よろしくお願いします。

  • 次の関数論の問題の解答解説をお願いします。

    次の関数論の問題の解答解説をお願いします。 複素関数f(z)がz=aで特異点を持つとする。このときf(z)は式(a)のように展開できることが知られている。なおcnはある係数である。 1.内部に特異点を1点だけ,z=aで持つある閉曲線Cについて(3)の各項の積分(式(b))を計算せよ。 2.1と同じ閉曲線についての積分(式(5))をcnを用いて表せ

  • 次の複素関数の解き方,解答を教えてください

    次の複素関数の解き方,解答を教えてください 正則関数f(z)の実部をu = u(x, y),虚部をv = v(x, y)とおくとき(2u - v) + i(u + 2v) が正則かどうかコーシー・リーマンの方程式を利用して調べよ。 お願いします。

  • 正則性について。

    --------------------------------------------------- f(z)=1/(bar(z)) z = x + iy とし z ≠ 0においてf(z)が正則であるかどうか判定せよ。 また、 R>0に対して複素積分 ∫_[|z|=R]f(z)dz の値を求めよ --------------------------------------------------- という問題なのですが、 u=x/x^2+y^2, v=u/x^2+y^2とすると、 ∂u/∂x = y^2-x^2/(x^2+y^2)^2 ∂v/∂y = x^2-y^2/(x^2+y^2)^2 となり、コーシー・リーマンの判定式を用いると、 ∂u/∂x≠∂v/∂yとなり、条件を満たさないので、 f(z)は正則ではないという結果が出ます。 f(z)が正則ではないのは、(bar(z))=0で特異点を持つためだと思うのですがこの問題の場合、z≠0で除外されていますよね? この場合、正則なのでしょうか? おそらく、特異点の捉え方がよくわかっていないのだと思います。 また、 次の問題はコーシーの積分公式で求めると思うのですが、 この公式は、bar(z)の場合にもそのまま当てはめてよいのでしょうか? ご指導ご鞭撻の程、宜しくお願い致します。

  • ニュートン法

    ニュートン法の問題です。 全平面で正則な複素関数f(z)=u(x,y)+i*v(x,y)(z=x+iy) の零点を求めるニュートン法は z(k+1)=z(k)-f(z(k))/f'(z(k)) ですが、 これは2元連立方程式 u(x,y)=0 v(x,y)=0 を解くニュートン法と等価であることを示せ という問題です。 とっかかりからわからないのですが、複素関数の微分の表現の仕方がわからないのと、u(x,y)=0のように2変数でしかも、抽象的に書かれるとニュートン法がわかりにくくなっているという点で困っています。 分かる方、解説よろしくお願いします。

  • 複素関数の1例について質問

    複素関数の1例について質問 f(z)=z^2-3z+2 のとき、その導関数は f’(z)=2z-3     で良いですよね。 逆に、曲線Cに関する積分は、(cの表示は省略) ∫f’(z)dz=∫(2z-3)dz=z^2-3z+C となるので良いと思います。 ここで、z=x+iy と置いて同様のことをすると、 f(z)=(x+iy)^2-3(x+iy)+2 =(x^2-y^2-3x+2)+i(2xy-3y) f’(z)=∂u/∂x+i∂v/∂x     =2x-3+i(2y)     (=2(x+iy)-3=2z-3) で良いですよね。 逆に、曲線Cに関する積分は、(cの表示は省略) 一般に ∫f(z)dz=∫(udx-vdy)+i∫(vdx+udy) なので、 ∫{2x-3+i(2y)}dz =∫(2x-3)dx-∫2ydy+i∫2ydx+i∫(2x-3)dy =x^2-3x-y^2+C+i(2xy)+i(2xy-3y) =(x^2-y^2-3x+C)+i(4xy-3y) となりましたが、 虚数部が(2xy-3y)になっていません。 何故でしょうか? ご教示、よろしくお願いします。

  • 数学問題

    どなたか答案の作成お願いします。 D を複素平面上の単連結な開集合とする. 複素関数f(z) はD 上で正則であり, D 上で零点を有しない とする. D 上の一点z0 においてargf(z0) を定めることにより, 関数u(x; y) = argf(z) をD 上の連続 関数として定めることができる. ここに, x; y は, それぞれz の実部, 虚部である. このとき, u(x; y) は D において調和関数であることを示せ.

  • 複素積分の問題

    複素積分の問題 次の複素積分の問題が分かりません. アドバイスいただけたら幸いです. 次の複素関数について以下の問に答えよ f(z) = z^-c / ( 1+z ) ただし、0<c<1 (1)複素平面上におけるf(z) の全ての特異点を求めよ (2)図中の閉曲線をγとする閉曲線γの矢印にそった向きの「周回積分」 ∫γ f(z)dzを求めよ γRは半径(R>1)の円し,γrは半径(r<1)の円を表す (3)z=R exp(iθ)またはr=R exp(iθ) (0<θ<2π)とおくことにより, 曲線及び曲線に沿った「周回積分」の絶対値 │∫γR f(z)dz│および、│∫γr f(z)dz│ がR→∞、r→0の極限において0に収束することを証明せよ (4)以上の結果を用い、次の「積分」 ∫(0→∞) x^-c / ( 1+x ) dx = π/ (sinπc) を証明せよ

  • 複素関数の導関数

    微分の定義     lim{Δz→0} {f(z + Δz) - f(z)}/Δz に立ち戻らずに偏微分などを使って複素関数の導関数を求めたいのですが。     w = f(z) = u + iv, z = x + iy (x,y,u,vは実数) として     f'(z) = dw/dz = (d/dz)(u + iv) までは合ってますよね? ここから     du/dz = (∂u/∂x)(∂x/∂z) + (∂u/∂y)(∂y/∂z) として     ∂z/∂x = 1, ∂z/∂y = i より     du/dz = ∂u/∂x - i ∂u/∂z 同様に     dv/dz = ∂v/∂x - i ∂v/∂z としてしまっていいのでしょうか? 実際の例としてf(z) = sin(z)を例に教えてください。

  • 数学の解答解説お願いします。

    過去問なのですが答えがなく困っています。 点(x,y)が直線3y+2x=1上の点を動く時、1/x+iy=u+ivから定まる点(u,v)の軌跡の長さを求めよ。ただしiは虚数単位でx,y,u,vはいずれも実数とする。 という問題です。 1/x+iy=u+ivを(vx+yu)i+xu-yv=1のように 変形してみたりしたのですが・・やり方の見当がつきません。 解答解説をしていただけると嬉しいです。よろしくお願いします。