• ベストアンサー

微分積分学

p>0とし、f(x)を区間I=[-p,p]で定義された関数とする。 このとき、以下を示せ。 (1)f(x)がI上連続ならば、あるa∈Iに対して ∫[-p→p]x^{2}f(x)dx=(2/3)p^{3}f(a) が成り立つ。 (2)f(x)がI上連続、微分可能かつf'(x)がI上で連続ならば、あるa∈Iに対して ∫[-p→p]x f(x)dx=(2/3)p^{3}f'(a) が成り立つ。 以上です。 お手数ですが、よろしくお願い致します。

質問者が選んだベストアンサー

  • ベストアンサー
noname#232123
noname#232123
回答No.1

f(x)は[-p, p]で連続ですから、x^2*f(x)は原始関数をもち、(d/dx)F(x)=x^2*f(x) をみたすF(x)を1つとります。 このとき、 ∫[-p to p]x^2*f(x)dx=[F(x)]=F(p)-F(-p)ですから、題意は、 区間I内のあるaに対し、 F(p)-F(-p)=(2/3)p^3*f(a) ... (*) が成り立つということです。このようなaが存在するとして、(*)をpで微分して、 F'(p)+F'(-p)=2*p^3*f(a), すなわち、 p^2*f(p)+p^2*f(-p)=2*p^3*f(a) ⇔ f(a)={f(p)+f(-p)}/2 ... (**) ですから、(**)をみたすaがI内にとれることを示せばよいことになります。 f(-p)<f(p) のときは、 f(-p)<{f(p)+f(-p)}/2<f(p) ですから、f(-p)<f(a)<f(p) をみたすaがI内に存在します(中間値の定理)。 f(p)≦f(-p) のときも同様。 2) 前問のように進めてみます。 (d/dx)F(x)=x*f(x) とすると、次式をみたすaがとれることを示します。 F(p)-F(-p)=(2/3)*p^3*f'(a) より、 p*f(p)+(-p)*f(-p)=2*p^2*f'(a) ⇔ f'(a)={f(p)-f(-p)}/{p-(-p)} ... (*) 平均値の定理より、(*)をみたすaがI内に存在します。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 微分と積分の関係

    実数全体で定義された連続関数f(x)に対してg(x)を g(x)=∫【0→x】t*f(x-t)dt で定めます。このとき、g'(x)=∫【0→x】f(t )dt となるそうなんですが、なぜこうなるのかわかりません。以下の定理を参考 にして教えてくださるとありがたいです。 【微分積分の基本定理】 関数F(x)=∫【a→x】f(t)dt は微分可能であり、 (d/dx)F(x)=f(x)

  • 微分可能ならば連続??

    微分可能→連続。 次の二つの命題について正しければ証明し、 そうでなければ反例をあげよ 1 関数f(x)が開区間(a,b)で微分可能ならば、f(x)は開区間(a,b)で連続である 2 関数f(x)が開区間(a,b)で微分可能ならば、その導関数f'(x)は開区間(a,b)で連続である。 答えは1は正しく、 2は間違いで反例はf(x)=x^2sin(1/x)を使ってみよとの事でした。 すみません1,2の証明をお願いできませんか?

  • 微分可能なら連続?

    微分可能→連続。 次の二つの命題について正しければ証明し、 そうでなければ反例をあげよ 1 関数f(x)が開区間(a,b)で微分可能ならば、f(x)は開区間(a,b)で連続である 2 関数f(x)が開区間(a,b)で微分可能ならば、その導関数f'(x)は開区間(a,b)で連続である。 答えは1は正しく、 2は間違いで反例はf(x)=x^2sin(1/x)を使ってみよとの事でした。 すみません1,2の証明をお願いできませんか? 詳しくおねがいします

  • 微分積分の問題です。

    閉区間Iで定義された関数f(x)がある。f"(x)がIで連続かつf"(a)≠0 a∈Iならば f(a+h)=f(a)+hf'(a+θh)  0<θ<1 において lim[h→0] θ=1/2 となることを示せ ε-δ論法で証明するんだと思います。 微積の理論的な問題がすごく苦手で、論述する回答の作り方 も身についていない状況です。 ご回答お願いします。

  • 微分とは何か

    関数y=f(x)に対して、xの微分dxとyの微分dyはそれぞれ dx=⊿x dy=f´(x)dx と定義される、と教科書に書いてあるのですが、 このように定義することの根拠や妥当性はどこにあるのですか。 また、導関数を求める=微分する、と習ったのですが、 「微分すること」と「微分」とはどのように違うのですか。

  • 積分の証明問題です。

    区間I=[a,b]で連続な関数f(X)がf(X)≧0で、かつある点Xo∈Iでf(Xo)>0 ならば、∫[a,b]f(x)dx>0であることを示したいんですがわかりません。 どなたか御解答お願いします。

  • 微分の定義に関して

    微分の定義に関してなのですが、参考書を読んでいたら微分の定義のところに次のように 書かれていました。 関数f(x)が点pで微分可能⇔適当な実数aと関数g(x)が存在して、 (イ) f(x)=f(p)+a(x-p)+g(x) (ロ) lim{x→p}(g(x)/(x-p))=0 が成立する。 このとき、aをf(x)の点pにおける微分係数という。 この定義の説明を見てもいったいなんのことを言っているのかさっぱりわかりません。 今まで微分の定義というと lim{x→p}(f(x)-f(p))/(x-p)というのしか習ったことがなかったので、この定義が何を表しているのか 分かりません。 そもそもg(x)がなんなのかaがなんなのか分かりません。 できれば図形的意味も教えていただけるとありがたいです。 よろしくお願いします。

  • 微分 積分 問題

    微分 積分 問題 F(x)=∫[a~x]((x-t)^2)f(t)dtのときdF/dxを求めよ。 という問題なのですが、原始関数F(x)を求めて、微分すればよいのですが F(x)=∫[a~x]((x-t)^2)f(t)dtの積分がわかりません・・・ どのようにすれば良いのでしょうか? ご回答よろしくお願い致します。

  • 微分積分学

    微分積分学 関数f:A→Rがa∈Aで連続であるとは、aに収束するA内の任意の数列{Xn}に対し Lim[n→∞]f(Xn)=f(a) となることである。 ε-δ論法を用いて ∀∈>0、∃δ>0、 |x-a|<δ、x∈A⇒|f(x)-f(a)|<ε さらに任意のa∈Aで連続のときfはA上の連続関数である。 のε-δ論法の証明が分かりません(;∀;) どうやって証明すればいいんでしょうか…。

  • 微分・積分 問題

    微分・積分 問題 F(x)=∫[a→-x^2]f(t)dtのときd/dxF(x)を求めよ。 f(t)の原始関数の一つをF(t)とする。 ∫[a→-x^2]f(t)dt=[F(t)][a→-x^2]=F(-x^2)-F(a) d/dx(F(-x^2)-F(a)) -x^2=sとおくと、ds/dx=-2x→dx=ds/-2xである。 F(s)を微分した関数をf(s)とする。→これは、必要ですか? d/(ds/-2x)(F(s)-F(a))=-2x・d/ds(F(s)-F(a)) =-2xf(s)=-2xf(-x^2) 答えは合っているでしょうか? ご回答よろしくお願い致します。