• 締切済み

微分可能なら連続?

微分可能→連続。 次の二つの命題について正しければ証明し、 そうでなければ反例をあげよ 1 関数f(x)が開区間(a,b)で微分可能ならば、f(x)は開区間(a,b)で連続である 2 関数f(x)が開区間(a,b)で微分可能ならば、その導関数f'(x)は開区間(a,b)で連続である。 答えは1は正しく、 2は間違いで反例はf(x)=x^2sin(1/x)を使ってみよとの事でした。 すみません1,2の証明をお願いできませんか? 詳しくおねがいします

みんなの回答

回答No.1

http://okwave.jp/qa/q7518759.html この辺の質問と回答を読んだら、理解が深まるかも。

関連するQ&A

  • 微分可能ならば連続??

    微分可能→連続。 次の二つの命題について正しければ証明し、 そうでなければ反例をあげよ 1 関数f(x)が開区間(a,b)で微分可能ならば、f(x)は開区間(a,b)で連続である 2 関数f(x)が開区間(a,b)で微分可能ならば、その導関数f'(x)は開区間(a,b)で連続である。 答えは1は正しく、 2は間違いで反例はf(x)=x^2sin(1/x)を使ってみよとの事でした。 すみません1,2の証明をお願いできませんか?

  • 関数の連続性

    問い lim[x→a]f(x)=b、lim[y→b]g(y)=cのとき、 lim[x→a]g(f(x))=cとなるか? 正しければ証明し、誤りなら反例を挙げよ。 私の答え  誤り 反例 関数g(y)がy=bで不連続であるとき この答えは合っていますか? この答えで反例を挙げたことになりますか?

  • 凸関数は連続的微分可能?

    私は専攻が物理な門外漢なので、表現に不備がありまくりだと思うのですが、何とかよろしくお願い致します。 上に凸の関数が  f(λa+(1-λ)b) ≧ λf(a) + (a-λ)f(b)  a,b は任意の実数 λは 0<λ<1 を満たす任意の実数 と定義されているとすると、折れ曲がった部分を持つ関数(例えば、傾き2と傾き1の直線が連続に繋がってる点があるような。つまりそこでは微分不可)も上に凸の関数と言えます。 しかし、  上に凸の関数は、それが定義されている区間の上で連続的微分可能 という定理があるらしいのですが、連続的微分可能ということは、その区間の任意の点で微分可能ということが前提されているのではないでしょうか?しかし、それだと微分不可の点があってもいいという上の主張と矛盾してしまいます。 連続的微分可能は次のような定義で書いてあります。  ある領域で、すべての1階の偏導関数が存在して、それらがすべて連続である関数 1階導関数が存在して、それが連続であるためには、すべての点で微分可能でないとダメだと思うのですが、その辺に間違いがあるのでしょうか…? どうぞよろしくお願い致します。

  • 微分可能性について

    ある国立大学院の過去問題です f(x)がx=aで連続ならば、(x-a)f(x)はx=aで微分可能となるか、答えを裏付ける証明か反例を示せ どなたか解説お願いします。

  • 一様連続でないの厳密な証明は?

    微分積分の期末テストで次の問題が出ました。 次の命題の正誤を答えよ。ただし理由も与えること。 命題:関数f(x)=x^ 2は区間[0,∞)で一様連続である。 この問題で自分は次のように解答しました。 (証)αを与えられた区間内の任意の要素とし、εを任意の整数とする。 あるδとしてmin.(ε/2|α|+1,1)とする。 このとき|x-α|<δ⇒|f(x)-f(α)|=|x^2-α^2|=|xーα|・|x+ α|<・・・・・(略)<δ(2|α|+1)<ε となり、故にf(x)=x^2は区間[0,∞)で一様連続でない。(なぜなら、δがε だけでなくαにも依存するから) この解答で一応マルはもらえたのですが、はじめにδを上のようにしたものだけを考 えていい理由は何なんですかね?もしかしたらεだけでδを表せるかもしれないの に。考えてはみてるんですがなかなか納得のいく答えが見つかりません。よかった ら力になってください。よろいくお願いします。

  • 連続性、微分可能性についての問題です。

    連続性、微分可能性についての問題です。 次の関数の連続性、微分可能性を調べよ。 (1) f (x) = (x^2-6x+8)/(x-2) (x≠2) 1 (x = 0) (2) g (x) = x sin 1/x (x≠0) 0 (x = 0) ~の範囲で連続、微分可能である、といった感じで答えていただきたいです。 よろしくお願いします。

  • 関数f(x)の連続性と微分可能性に関する問題です。

    aを実数とする。次で定義される関数f(x)の連続性と微分可能性を調べよ。 x≦0のときf(x)=0、x>0のときf(x)=x^a*sin1/x という問題について、解いている途中で混乱が生じました。 x≠0のときf(x)は連続かつ微分可能だから、x=0におけるふるまいを調べる。 x>0のとき、f'(x)=a*x^(a-1)*sin(1/x)-x^(a-2)*cos1/xであり、x<0のときf'(x)=0 (i)右からの極限 -1≦sin1/x≦1だから、-x^a≦x^a*sin1/x≦x^a はさみうちの原理より、lim【x→+0】(-x^a)≦lim【x→+0】f(x)≦lim【x→+0】x^a a>0ならばlim【x→+0】f(x)=0 a=0のときはlim【x→+0】f(x)=1 a<0のときはlim【x→+0】f(x)は発散。 よってa>0のとき連続。a≦0のとき不連続。(答) 次に微分可能性を調べる。 (ii)右からの極限 lim【x→+0】f'(x)=lim【x→+0】{a*x^(a-1)*sin(1/x)-x^(a-2)*cos1/x} (i)と同様に考えるとlim【x→+0】a*x^(a-1)*sin(1/x)はa>1のとき0。a=0のときも0。 a=1のときsin∞となり発散で微分不可能。a<1のときも発散で微分不可能。 ゆえにa>1またはa=0に限定してlim【x→+0】f'(x)の極限を調べる。 このときlim【x→+0】f'(x)=lim【x→+0】{-x^(a-2)*cos1/x} -1≦cos1/x≦1であり、同様にはさみうちの原理からlim【x→+0】f'(x)はa>2ならばlim【x→+0】f'(x)=0で微分可能。a<2ならば微分不可能。(答) 問題集には、a>1のとき微分可能。a≦1のとき微分不可能と書いてあります。私の解き方のいけない点を教えてください。

  • ロルの定理の前提『[a,b]で連続、(a,b)で微分可能』について。

    皆様、お世話になります。よろしくお願いします。 __________________________________ ロルの定理 f(x)が閉区間[a,b]で連続、開区間(a,b)で微分可能でf(a)=f(b) ならばf'(ξ)=0、a≦ξ≦bなる点ξが存在する。 ___________________________________ の前提部分の『閉区間[a,b]で連続、開区間(a,b)微分可能』 がいまいちよく分かりません。 定義域の端点においても微分可能が定義でき、なおかつ微分可能であれば連続であるので 『閉区間[a,b]で連続、開区間(a,b)微分可能』を『閉区間[a,b]において微分可能』とまとめてしまっても良いような気もするのですが、 このようにしない理由は何なのでしょうか? よろしくお願い致します。

  • 連続性のある関数を、中間値の定理に基づいて、実数解があることを示す方法がわかりません(ToT)

    微分積分を勉強しているのですが、全く理解できない問題がありまして・・・。 【問題】 方程式3x=2^x+2^-xは、区間(0,1)の中に少なくとも一つの実数解をもつことを示せ。 【解答】 f(x)=3x-(2^x+2^-x)とおけば、f(x)は全区間Rで連続であり、 f(0)=-2<0 f(1)=3-(2+1/2)=1/2>0 である。中間値の定理(※)により、 f(x)=3x-(2^x+2^-x)=0 であるようなxが、区間(0,1)の中に、少なくとも一つ存在する。 ●○●○●○●○●○●○●○●○●○●○●○●○●○●○ ※連続関数の中間値の定理 関数f(x)が、閉区間[a,b]で、連続でf(a)≠f(b)のとき、f(a)とf(b)の値kに大して、 f(c)=k である点cが、開区間(a,b)の中に少なくとも1つ存在する。 ●○●○●○●○●○●○●○●○●○●○●○●○●○●○ 読みにくいと思いますので、添付ファイルもご覧にいただきたいのですが、どうしてf(x)=3x-(2^x+2^-x)とおけば、f(x)は全区間Rで連続になるのでしょうか? 関数f(x)が「連続であるかどうか」を調べるには、例えば、f(x)をaで微分した「lim(x→a) f(x)」と、元の関数f(x)がx=aの時、すなわち「lim(x→a) f(x)=f(a)」、「f'(a)=f(a)」となる時、連続なんですよね? ですが、f(x)=3x-(2^x+2^-x)は、変数xが指数としてくっ付いてるので、どう微分していいのやら・・・。 なので、「全区間Rは連続であり」と言われても、全くピンときません(ToT) どうして「<0」「>0」など、0から目線で証明を進めているのかもわかりません(>_<) 皆様のお力をお借しいただきたい次第です。 よろしくお願いします<m(__)m>

  • 関数の連続、微分、接線、積分

    関数の連続や微分可能な関数などについての理解があいまいなのですが、以下の文章に間違いがあったら指摘くださいますか? 左右両方からxがaに接近するときの微分係数が一致したら、x=aで微分可能 x=aで微分可能ならx=aで連続。  微分可能で直線じゃないならその点においての接線がある。 微分不可能な点では接線は存在しない。 積分は連続している範囲でできる。 連続していない範囲では積分できない。 連続は(数学的じゃないですが)一筆書きでかけるようなのを連続という。数学的にはイプシロンデルタ論法をつかうと思いますが今は省略します。 f(x)が範囲Mで微分可能ならf '(x)は範囲Mでさらに微分可能。これは何回でも可能で、多項式関数の場合は最終的に0になる。 たとえばf(x)=|x| はすべての実数において連続だがx=0で微分できない。 xが0にちかづくときプラスからでもマイナスからでもf(x)は0になりかつf(0)が0であるから連続 xが0に近づくときプラスからとマイナスからの接近による微分係数は順に1,-1なので、微分できない。微分できないのでx=0における接線は存在しない。 回答よろしくお願いします。