• 締切済み
  • すぐに回答を!

統計学でこまってます。

レポートが不合格で返ってきました。どうしても わかりません。おしえてください。     離散型確率変数X、Yの分布は   P(X=xi)=pi,P(Y=yi)=qi (i=1,2)です。 (1)E(X+Y)=E(X)+E(Y) (2)XとYが独立な確率変数であるとき   V(X+Y)=V(X)+V(Y)  批評は(1)Pi=ri1+ri2,qj=v1j+v2jを証明してください。     (2)X、Yが独立のとき        E(XY)=E(X)E(Y)を証明する。 確率変数Xが二項分布B(9、1/2)に従う時、Xの分布の値 P(X=k)=(0~9)のひとつひとつを正規分布で近似し 相対誤差を計算する。ここで相対誤差|d/P(X=k)|*100%, d:誤差です。数値は小数点以下第6位を四捨五入して第5位まで。 批評はP(X=K)[K=0~9]のひとつひとつを正規近似する。    9C0=(1/2)^0=1です。 上記3問よろしくお願いします。

共感・応援の気持ちを伝えよう!

みんなの回答

  • 回答No.1

一面識もないあなたにこんなことを言う失礼は重々承知していますが、大学の教師をしている私から恐らく大学生であろうあなたに一つ言わせて下さい。自身で考えた上、返却レポートの「批評」がわからないのなら、まずその先生のところに行くのが筋ではないでしょうか?とことん聞いて下さい。遠慮は無用です。それともここで聞いた答えをあなたは再レポートして合格すれば中身が分からなくてもよいとでも言うのでしょうか?ちなみに「批評」に書かれていることは重要なヒントになっています。少なくとも(1)(2)は基本的な事柄で、これがヒントをもらっても分からないということは、もっと前に戻って、復習する必要があります。安易に答えを求めないで、努力して下さい。回答が付かない理由は恐らく皆さんそのように思っておられるからだと思います。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 統計学についての質問

    「確率変数Xが2項分布(12、2)に従うときP(X=k)、  (k=0~12)の値の一つ一つを正規近似して相対誤差を求めよ。ただし真の値に対する誤差の絶対値の%を相対誤差とする。」 という問題で、自分はkが0~12までは2項分布、kが-0.5~0.5、0.5~1.5、という感じでやっていくのは正規近似、というやり方でやっていますが(n=12, p=1/2) 、二項分布で求める値が真の値、正規分布で求める値が近似値であるとすると、 k=0のときを考えた場合、 真の値がおよそ0.00024414062、近似値が0.00062となってしまい、誤差はこの差の絶対値を取るものなので、計算すると0.00037585938となり、 相対誤差は0.00037585938÷0.00024414062=およそ1.539522となってしまいます。計算ミスではなく、やり方が間違っているのだと思いますが、どこがどのように間違っているのか、どなたか教えて頂けたらと思います。よろしくお願いします。

  • 2項分布の正規近似

    確率変数Xが2項分布(12,1/2)に従うとき、P (X=k)(k=0~12)の値の1つ1つを正規近似して、相対誤差を求めよ。 ただし、真の値に対する誤差の絶対値の%を相対誤差とする。 この問題で P(X=k)=P(k-0.5<x<k+0.5) =P( (k-0.5-6)/√3 < (X-6)/√3 < (k+0.5+6/√3) ) をZ~N(0,12)で近似するそうですがぜんぜんわかりません。教えてください。

  • 統計学について

    統計学の問題です。平均はできたのですが、分散ができなくて困っています。解答、解説をどうかよろしくお願いします。問題は以下です。 確率変数X、Yは独立で、それらの平均と分散はE(X)=μ1、E(Y)=μ2、V(X)=σ1、V(Y)=σ2であるとする。εはベルヌーイ分布Ber(p)に従う確率変数であり、X、Yとは独立であるとする。そのとき、確率変数Z=εX+(1-ε)Yの平均と分散を求めよ。 ちなみに、答えは、E(Z)=pμ1+(1-p)μ2、V(Z)=pσ1+(1-p)σ2+p(1-p)(μ1-μ2)^2 です。

  • 統計学を教えて

    次の問題に苦しんでいます。教えてくれると助かります。 確率変数X.Yは独立で、それらの平均と分散は、E(X)=μ1、E(Y)=μ2、V(X)=σ1^2、V(Y)=σ2^2 であるとする。εはベルヌーイ分布Ber(p)に従う確率変数であり、X.Yとは独立であるとする。そのとき、確率変数Z=εX+(1-ε)Yの平均と分散を求めよ。 出来れば、解説もしてもらえると助かります。

  • 統計学

    どうしても分からないので教えて欲しいと思います。 問題は、 「離散型確率変数X,Yの分布はP(X=xi)=pi(i=1,2)   P(Y=yi)=qi(i=1,2)である。(1)P(X=xi,Y=yj)=rij(i,j=1,2)とするとき、 ri1+ri2=pi(i=1,2) r1j+r2j=qj (j=1,2) が成立することを示せ。」です。 再提出となった自分のレポートは、  まず、x1とx2の確率(p1, p2とする)の合計が1になる表と、同様にy1とy2の確率(q1,q2とする)の合計が1となる表をかきました。  次に、iとjの組み合わせについて、(xi, yi)とrijとの対応する表をかき、 r11+r12=p1 ((1)とする) r21+r22=p2 ((2)とする) r11+r21=q1 ((3)とする) r12+r22=q2 ((4)とする)を導き、 (1)、(2)より、ri1+ri2=pi (i=1,2) (3)、(4)より、r1j+r2j=qj (j=1,2) したがって、ri1+ri2=pi (i=1,2) r1j+r2j=qj (j=1,2) が示せた。 と書いて出した所、 「文中の表は(ⅰ)P(X=xi,Y=y1)+P(X=xi,Y=y2)=pi(i=1,2) (ⅱ)P(X=x1,Y=yj)+P(X=x2,Y=yj)=qj (j=1,2) が成立することを前提にして作った表です。(ⅰ)、(ⅱ)の等式の成立を証明して下さい。」   と書かれて再提出でした。(ⅰ)、(ⅱ)の等式の成立の証明なんですが、いくら考えても出来ません。どなたかアドバイスお願いします。

  • 数学(数理統計学)の質問です。

    数学(数理統計学)の質問です。 2つの確率変数X,Yはそれぞれ密度関数f(x),g(x)をもつ分布に従い、平均E(X)=μ,E(Y)=ν,分散V(X)=σ^2,V(Y)=τ^2をもつとする。さらに、εはベルヌーイ分布Ber(p)に従う確率変数であり、X,Yと独立であるとする。そのとき、確率変数Z=εX+(1-ε)Yはどのような分布に従うか、その確率変数を求めよ。また、平均E(Z)と分散V(Z)を求めよ。 答えはあるのですが、解答に至る過程がわかりません。ご指導よろしくおねがいします。

  • 統計学の問題

    統計学の問題です。どなたか回答を教えてください。 よろしくお願い致します。 Q3. 確率変数Xは平均510、標準偏差370の正規分布に従うとする。つぎの確率,あるいは確率点を求めなさい。 (1) P(X>860)= (2) P(450<X<1150)= (3) P(X>k)=0.025となるkを求めなさい。 k= Q4. Q3の正規分布を母集団として,そこから抽出したn=25個の無作為抽出標本の標本平均をMとおく。標本平均Mの分布について答えなさい。 (1) P(M<570)= (2) P( 350<M<710)= (3) P(M<k)=0.05となるkを求めなさい。 k= Q5. 表が出る確率が(U2/700)である(いかさま)コインをについて以下では答えなさい。 (1) このコインをU1回投げたとき,表が出る回数をXとおく。確率変数Xの分布に関して,その平均と分散を答えなさい。 (2) 同じコインを今度は200回投げたときに表が出る回数をYとする。 a.このとき平均E(Y)よりも,10回以上表が多く出る確率を求めなさい。 P{Y≧E(Y)+10}= b.P(Y<k)=0.025となるkを求めなさい。 k= よろしくお願い致します。

  • 大学数学(統計)

    大学の統計の問題です。自分でやってみたのですが、できなくて困っています。どうか、解答、解説をよろしくお願いします。   問題:確率変数Xが2項分布Bn(50,0.1)に従うとき,確率P(X<=3)を計算せよ。また、この確率を2項分布のポアソン近似を用いて計算し、正確な確率と比較せよ。 教科書の解答:正確な2項分布の確率 P(X<=3)=0.25はポアソン分布の確率P(Y<=3)=0.265で近似される。

  • 確率の問題です!

    X1,X2は独立な確率変数で、P(Xi=k)=(1-pi)pi^k-1 (i=1,2 k=1,2,…) (1)E(X1) (2)E(X1X2) (3)P(X1 < X2) (1)はΣk(1-p1)p1^k-1を計算して1/(1-p1) (2)は1/{(1-p1)(1-p2)}となるのは分かったのですが(3)が分かりません。教えてください。 あと、確率変数XとYは互いに独立で、それぞれパラメーターλ,ν(0<λ,ν<1)の幾何分布に従うとする。Z=min{X,Y}とおくときP(Z=N)(n=1,2,…)を求めよ。 この問題はさっぱり言ってる意味が分かりません。分かる方是非教えてください。

  • 統計学(離散型確率変数)の問題文の意味

    独学で数学を勉強しています。 問題が解けないというより、問題の意味が読み取れなくて困っています。問題の意味を解説していただけないでしょうか。 離散型確率変数X,Yの分布はP(X=xi)=pi(i=1,2), P(Y=yj)=qj(j=1,2)である。 ※ここまでは理解できてます。 P(X=xi,Y=yj)=rij(i,j=1,2)とするとき、 ri1+ri2=pi, r1j+r2j=qj(i,j=1,2)が成立することを示せ。 ※バカな質問かもしれませんが、このときの"r"って相関係数のrとは違いますよね? このri1,ri2,r1j,r2jというのが何を表しているのか理解できません。 どなたか、解説していただけないでしょうか。 よろしくお願いします。