• ベストアンサー
  • すぐに回答を!

高校数学、微分可能性

(問題)-2≦x≦2のとき、f(x)=∫(0~x)(1-t^2)e^tdtの最大値、最小値をもとめよ。 f‘(x)=d/dx∫(0~x)(1-t^2)e^tdtとあります、 微分可能性はどうして保障されているのでしょうか?すべての実数xについて微分可能なのでしょうか?

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数54
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

g(x)=(1-x^2)e^xは連続で積分範囲(-2≦x≦2)内に特異点(分岐や±∞になる点など)がなく、 f(x)=∫(0~x)g(t)dtも同様ということです。 すべての実数xについて微分可能です。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 微分可能性について

    微分可能な関数f(x)がf‘(x)=|e^x-1|を満たし、f(1)=eであるとき、f(x)を求めよ。 x≧0のとき、(xは全ての実数について微分可能なので、こうしました) f`(x)=e^x-1よって、f(x)=∫(e^x-1)dx=e^x-x+C f(1)=eより、e=e-1+Cよって、C=1。f(x)=e^x-x+1 x≦0のとき、f‘(x)=-e^x+1 f(x)=∫(-e^x+1)=-e^x+X+D f(x)はx=0で微分可能だから、x=0で連続であり、 lim(x→+0)(e^x-x+1)=2=f(0) lim(x→ー0)(-e^x+x+D)=-1+D=2よって、D=3 よって、f(x)=e^x-x+1(x≧0)、-e^x+X+3(x≦0) という答案を書きました。 一方、問題集の答えでは、x=0では導関数は定義されないことからx>0、x<0と場合分けしています。 しかし、全ての実数で微分可能な事がわかっている以上、x≧0、x≦0と場合分けしてはいけないのでしょうか?

  • 「微分可能性を調べよ」という問題です

    f(x)=0 (x<=0) e^(-1/X) (X>0) の微分可能性を調べる問題なんですが、答えが「全ての点で微分可能」となってます。 lim(h→0) {f(h)-f(0)}/(h-0) =lim(h→0) e^(-1/h)/h =lim(h→0) 1/{e^(1/h)・h} とやってみたんですが。どうすればいいですか?

  • 微分可能性

    f(x)=xcos(1/x) (x≠0) 0 (x-0) のときの微分可能性を調べよ という問題です。 計算してlim[x→0]cos(1/x)となりlim[x→0]cos(1/x)は存在しないから微分不可能としたら、存在しない理由を問われました。解法もあっているかどうか心配ですし、理由もあまりよくわかっていません。 ご教授お願いします。

その他の回答 (1)

  • 回答No.2
noname#199771
noname#199771

微分積分学の基本定理

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 大学数学の全微分可能性に関する質問です、どなたかよろしくお願いします

    大学の全微分に関する問題で 次の関数は原点で全微分可能でないことを示せという問題なのですが。 f(x)= x^2y/(x^4+y^2) (x,y)=(0,0)以外のとき     0  (x,y)=(0,0)のとき 原点における偏微分可能性と連続性を考えたところ、 関数の連続性に関しては y=x^2 と y=x にそった極限の値の違いから連続でないことはわかったのですが、 偏微分可能性についてがどうしてもよくわかりません。普通に偏微分したら原点ではできないとは思うのですが、 そもそも連続じゃないのに偏微分可能なんてことがあるのだろうかなどと考えはじめたら混乱してしまいました。。。 この方法で示せるのかも含めてどなたか回答をよろしくお願いします。<(_ _)>

  • 逆関数の微分可能性

    逆関数の微分可能性についての質問なのですが 1変数において y=f(x)が何回でも微分可能であれば 逆関数x=g(y)は何回でも微分可能である理由を述べよ という問題なのですが この『何回でも』という言葉がよくわからないのですが これは、y=f(x)が何回でも微分可能だから逆関数でも何回でも成り立つという考えなのでしょうか。

  • 微分可能性について

    微分可能性について このぐグラフの意味するところがよくわかりません。 とくに黄緑色のがOをこえてしまうところが、、、 なんとか解説できるかたがいらっしゃったら、よろしくお願いします

  • 全微分可能性

    全微分可能性であるのは f(x,y)-f(a,b)=m(x-a)+n(y-b)+o(√(x-a)2+(y-b)2) を満たすm,nが存在するときにいう、とあるけど、この式が何を意味しているのか分かりません。教えてください。

  • 逆関数と連続・微分可能性

    数学IIIの問題です。 大きく2つに分けた問題をお聞きしたいです。 (1)y=f(x)=2x^2+4x+1 (x≦-1)の逆関数をxの式で表しなさい。 (2)f(x)=xsin1/x (x≠0のとき),f(x)=0 (x=0のとき) g(x)=x^2sin1/x (x≠0のとき),g(x)=0 (x=0のとき) とする。 x=0での連続と微分可能性を考察しなさい。 特に(2)に関して、私は連続と微分可能性を理解できていませんので できるだけわかりやすく回答お願いしたいです。

  • 関数f(x)の連続性と微分可能性に関する問題です。

    aを実数とする。次で定義される関数f(x)の連続性と微分可能性を調べよ。 x≦0のときf(x)=0、x>0のときf(x)=x^a*sin1/x という問題について、解いている途中で混乱が生じました。 x≠0のときf(x)は連続かつ微分可能だから、x=0におけるふるまいを調べる。 x>0のとき、f'(x)=a*x^(a-1)*sin(1/x)-x^(a-2)*cos1/xであり、x<0のときf'(x)=0 (i)右からの極限 -1≦sin1/x≦1だから、-x^a≦x^a*sin1/x≦x^a はさみうちの原理より、lim【x→+0】(-x^a)≦lim【x→+0】f(x)≦lim【x→+0】x^a a>0ならばlim【x→+0】f(x)=0 a=0のときはlim【x→+0】f(x)=1 a<0のときはlim【x→+0】f(x)は発散。 よってa>0のとき連続。a≦0のとき不連続。(答) 次に微分可能性を調べる。 (ii)右からの極限 lim【x→+0】f'(x)=lim【x→+0】{a*x^(a-1)*sin(1/x)-x^(a-2)*cos1/x} (i)と同様に考えるとlim【x→+0】a*x^(a-1)*sin(1/x)はa>1のとき0。a=0のときも0。 a=1のときsin∞となり発散で微分不可能。a<1のときも発散で微分不可能。 ゆえにa>1またはa=0に限定してlim【x→+0】f'(x)の極限を調べる。 このときlim【x→+0】f'(x)=lim【x→+0】{-x^(a-2)*cos1/x} -1≦cos1/x≦1であり、同様にはさみうちの原理からlim【x→+0】f'(x)はa>2ならばlim【x→+0】f'(x)=0で微分可能。a<2ならば微分不可能。(答) 問題集には、a>1のとき微分可能。a≦1のとき微分不可能と書いてあります。私の解き方のいけない点を教えてください。

  • 連続性、微分可能性についての問題です。

    連続性、微分可能性についての問題です。 次の関数の連続性、微分可能性を調べよ。 (1) f (x) = (x^2-6x+8)/(x-2) (x≠2) 1 (x = 0) (2) g (x) = x sin 1/x (x≠0) 0 (x = 0) ~の範囲で連続、微分可能である、といった感じで答えていただきたいです。 よろしくお願いします。

  • f(x,y)=√(1-x^2-y^2)の全微分可能性について

    f(x,y)=√(1-x^2-y^2)の全微分可能性について f(x,y)=√(1-x^2-y^2)の点(0,0)における全微分可能性について、全微分可能の定義に従って、調べております。 ?f=f(x+?x,y+?y)-f(x,y)より ?f=√{1-(x+?x)^2-(y+?y)^2}-√(1-x^2-y^2)で、x=0,y=0を代入すると、 ?f=√{1-(?x)^2-(?y)^2}-1 となりましたが、ここからの展開がわかりません。 アドバイスいただければと思います。宜しくお願い致します。

  • 微分可能

    y=f(x)(x≦c), y=g(x)(c<x) がx=cで微分可能かどうかを調べるとき lim_{x→c-0}df(x)/dx lim_{x→c+0}dg(x)/dx をそれぞれ求めて考えてもよいですよね? 記憶が定かではないのですが、予備校の教師が微分可能性を調べるときは定義からやれといっていたような覚えがあるのですがどうでしょうか?

  • 関数の連続性と微分可能性

    以前お世話になりました、大学受験生です。 数学本の中に「明らか」としか述べられていない話があって、 もやもやしているので質問させていただきます。 その文章は以下のもので、 実数全体で連続な関数f(x)が原点を除いたところで何回でも微分可能 で(c^∞級と言うらしいです)、lim[x→0]f'(x)がある実数aに 収束しているならばf(x)は原点でも微分可能であって、 またf'(x)は実数全体で連続(つまりf'(0)=a)となっている。 です。 どう証明したらよいのでしょうか。恥ずかしながら見当がつかないのです。 それから勝手に自分で進めていることなのですが、 たとえば関数e^(-1/x^2)というのがあったとして、 原点以外でc^∞級であることを既知としていれば、原点でも 微分可能であるということになるのですか。 わかる方、長くなってもよいので詳しいご教授願います。 よろしくお願いいたします。