• ベストアンサー
  • すぐに回答を!

強制振動

ばね(弾性定数=c,c>0)の上端を固定し、他端に質量mのおもりをつるす。上端を上下に振幅a、角振動数ωで単振動的に振動させるとき、おもりに行う運動は? 参考書の解答  x₀=Asinωt  運動方程式 m(d^2x/dt^2)=mg-c(x-x₀-l) なぜ、運動方程式 m(d^2x/dt^2)=mg-cxではだめなんですか? 詳しい解説お願いします。

共感・応援の気持ちを伝えよう!

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1

これはさすがにまずいでしょう。 xoが定数であれば適当な座標変換を行うことで質問者の提示した式にできます。 しかし、今回の問題ではうまくできません。 m(d^2x/dt^2)=mg-c(x-xo-l) これをy=x-xo-lと変数変換してみましょう。 x=y+xo+l となりますので代入すると m{d^2(y+xo+l)/dt^2}=mg-cy md^2y/dt^2+md^2xo/dt^2=mg-cy md^2y/dt^2-mω^2xo=mg-cy となり、余分な項-mω^2xoが出てくるのです。これは消すことができません。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • 強制振動

    m×d^2x/dt^2+mω。^2x+2mν×dx/dt=Fcosωt...(1) 1.強制振動の場合の一般解が、F=0とした斉次方程式の解と、Fの入った方程式の特解の和で与えられることを示せ。 2.特解を求めよ。 3.特解の振幅について、外力の振動数を変えたときどうなるかしらべよ。 4.特解の位相と外力の位相の関係を、外力の振動数が小さいときから大きくしていく場合についてどうなるかを議論せよ。 自分の解等 1.わかりません 2.(1)×1/mより  d^2x/dt^2+ω。^2x+2ν×dx/dt=F/m×cosωt 特解をx=Acosωtとおき上の式に代入する  -ω^2Acosωt+ω。^2Acosωt-2νωAcosωt=F/m×cosωt F/m=fとすると  A=f/-ω^2+ω。^2-2νω よって特解は    x=f/-ω^2+ω。^2-2νω×cosωt 3. 振幅はω<ω。で正、ω>ω。で負の値をとるがωに近づくにつれ、そ  の絶対値は無限大に発散する。 4.わかりません。

  • 振動です

    図のように、2つのばねk1,k2と2つの質量m1,m2がとり付けられています。xo(t)=Xosinωtで支持部が変位するとき (1)この振動系の運動方程式を導出しなさい 私の回答 m1(d^2 x1 /dt^2)=-k1(x1-xo)+k2(x2-x1) と m2(d^2 x2 /dt^2)=-k2(x2-x1) (2)k1=2k , k2=k ,m1=m ,m2=m/2 の時、設問(1)の運動方程式はどう書き直せるか。ωo=√(k/m)を用いて記述せよ 私の回答 (d^2 x1 /dt^2)=-2(ωo^2)(x1-xo)+(ωo^2)(x2-x1) (d^2 x2 /dt^2)=-2(ωo^2)(x2-x1) (3)ωo=1rad/sのとき、設問(2)の運動方程式を用い、固有角振動数ωnを求めよ。 この問題を見た瞬間、あれωoが(不減衰)固有角振動数でないの?って思いました。ωoとωn何が違うのですか? それと設問(1)(2)は正しいですか?教えてください

  • 物理 単振動

    ばね定数kのばねに質量mの小球をつけ、水平で滑らかな床の上に置き、ばねの他端を固定した。小球は質点とする。次に小球を手でつかみ、ばねを伸ばして手を離したところ、小球は単振動した。ばねの長さに沿った方向をx軸として振動の中心を原点とする。このとき、小球の運動方程式はm((d^2x)/(dt^2))=ーkxと書ける。小球の変位はこの運動方程式の解として与えられx=Asinωt+Bcosωtと書ける。ただし、ωは角振動数であり、A,Bは初期条件で決定される定数とする。 (1)運動方程式よりx=Asinωt+Bcosωtを導出せよ。 (2)解を運動方程式に代入するとωをmとkで表すことができる。その式を求めよ。 (3)小球は時刻t=0のとき、原点x=0を速度voで通過した。この時の、AとBを求めよ。 (4)ばね定数kおよびばね定数2kのばねを小球の両側に一直線となるようにつけ、それぞれのばねが自然の長さとなった状態で固定した。次に小球を手でつかみ、ばねの長さに沿って移動させて手を離したところ、小球は単振動した。ばねの長さに沿った方向をx軸として、振動の中心を原点とする。このときの運動方程式を求めよ。 特に(3),(4)がわかりません。(1)~(4)どれでも構いませんので回答よろしくお願いします。 もちろん、(1)~(4)を教えてくださると大変助かります。 よろしくお願いします。

  • ばね

    大学1年の力学のばねのもんだいです。 しぜんちょうLバネ定数kのばねに質量mのおもりをつけてつるし、 ばねの上端をasinωtのように振動させた。 下向きにx軸t=0での上端の位置を原点にとり、 おもりのx座標として運動方程式を書き、解をもとめよ なんですが。参考書等みても上端を固定してある場合が多く この問題の解き方考え方がわかりません。 どなたかアドバイスおねがいします!!

  • 力学(ばねの運動)についての質問です。

    力学(ばねの運動)についての質問です。 回答を読むと、大体分かるのですが、一部分からないところがあります。 問 質量mのおもりが、上端を天井に固定された軽いばね(ばね定数k)の下端に取り付けられ、鉛直線上で振動している。おもりの運動方程式を立て、運動を解け。 z軸を鉛直下向きにとった場合 運動方程式が md^2z/dt^2=mg-kzとなるまでは分かるのですが、 その後の解答が 「Z=z-mg/kとおくと、d^2z/dt^2=d^2Z/dt^2だから、上式は md^Z/dt^2=-kZ と書け、単振動の式と一致する。」 となっているのですが、なぜ d^2z/dt^2=d^2Z/dt^2 が 成り立つのかがよく分かりません。 解説よろしくお願いします。

  • 一自由度系の強制振動の理論値

    質量Mの物体がx1=a*sin(ωt)の運動が与えられていて、ばね定数k、減衰係数をcとしたとき、運動方程式、 .. . Mx +cx +kx=a{k*sin(ωt)+cω*cos(ωt) となります。この方程式から解を求めると理論振幅比が √((k^2+(cω)^2)/((k-Mω^2)^2+(cω)^2)) となり、また理論位相差は、 Φ=tan-1(cω/(k-Mω^2)) というようになるらしいのです。 いくら値をはめてもおかしな値になります。 この式は正しいのでしょうか? ちなみにω=2*π*f (fは振動数) c=2√Mk でExcelを使って計算しています。

  • 微小振動の運動方程式について

    皆様お世話様です。初めて投稿させていただきます。今回質問させていただくのは微小震動の運動方程式についてです.(実際にはあまり意味のない運動方程式になりますが,確認のために問題を省略して質問させていただきます) 長さlの剛体棒の一端がピン支持されており,接点と他端に質量mが接続してあります。この質量に対してPsinωtの強制振動を加えた場合の微小震動の運動方程式を考えます。 このとき(回転の)運動方程式は J{d^2θ/dt^2}=l*Psinωt となりますでしょうか?モーメントを考えるとこうなると思ったのですが,どうもしっくりきません.l*Psinωtの項を微小震動の近似をしていないことになるのでしょうか.回答のほどよろしくお願いいたします.

  • 単振動の問題です。よろしくお願いします。

    教科書の問題を解いていたのですが、解答も載っていなくてわからなかったので教えてもらえないでしょうか。 自然の長さがdで質量を無視できるばねがある。ばねの上端を天井に固定し、質量mの重りを吊るしたら、長さaだけ伸びて静止した。次に、bだけ伸ばして静かに離したら重りは振動を始めた。鉛直方向を始めに重りが静止していた位置を原点OとしたX軸(下向きを正)、重力加速度の大きさはgとし、ばね定数kとした場合以下の問いに答えよ。 (1)重りが静止しているときの力のつり合い式はいくらか。また、ばねの伸びaはいくらか。 (2)時刻tでの重りの位置をX(t)として、重りの運動方程式はいくらか。 (3)X(t)=Asin(ωt+φ)がこの運動方程式の解であること証明せよ。(ただし、ω=√k/mとする) (4)この運動の初期条件は? (5)(4)の初期条件より、Aとφを求めよ。

  • 振動の問題です

    分からないので教えて頂けると助かります。 N個の質量mの質点がバネ定数kのバネで一列につながっているとする。 j番目の釣り合いの位置からの変位をx_jと表す。 j番目の質点の運動方程式は (d/dt)^2(x_j)=-ω^2(2x_j-x_(j+1)-x_(j-1)) と表される。 ここで、x_0=0,x_N+1=0,ω=√(k/m)である。 x_j=Asin(kj)+Bcos(kj)として運動方程式を解き、基準振動の振動数を求めよ。

  • 物理についての問題です.(強制振動) 

    物理についての問題です.(強制振動) d^2x/dt^2+2ɤ dx/dt+ω^2 x=fosin(ω0t+Φ0) の特解を求めよ. [外力と同じ角振動数ω0の振動が残るので,xp(t)=Dsin(ω0t+Φ0+θ)の形で特解が見つかる.Dとθは微分方程式を満たすように決めなければならない.] 上記の問題についてご解説よろしくお願いします. 途中の計算もお願いします.