• ベストアンサー
  • すぐに回答を!

ばね

大学1年の力学のばねのもんだいです。 しぜんちょうLバネ定数kのばねに質量mのおもりをつけてつるし、 ばねの上端をasinωtのように振動させた。 下向きにx軸t=0での上端の位置を原点にとり、 おもりのx座標として運動方程式を書き、解をもとめよ なんですが。参考書等みても上端を固定してある場合が多く この問題の解き方考え方がわかりません。 どなたかアドバイスおねがいします!!

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数1473
  • ありがとう数0

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
noname#40706
noname#40706

あなたがどこまでかんがえてどこまでわからないのかがわたしにはわかりませんが・・・・ まずは:おもりにはたらく力をきちんとあらわす。 つぎに:運動方程式を作る、 そして:それを頑張って解く。 これが定番の流れなのではないのですか。 まず、      ↓指 |----|~~~~~~~~~● ←asinωt →← L  →← b → ←      X       → L:自然長、b:ばねののび おもりにはたらく力は mg-kb。  b=X-(asinωt+L) つぎに、運動方程式 ma=mg-k(X-(asinωt+L)) a、Xはtの式、aはXの2階微分、 そして・・・・上の式を微分方程式として解けばいい。 ここからさきはわたしはわかりませんだいがくせいならばわかるでしょうということではないですか。

共感・感謝の気持ちを伝えよう!

質問者からの補足

微分方程式の解き方が分からないんですが、 どのように解くのですか?

その他の回答 (1)

  • 回答No.2

 #1のhata3955jさんが丁寧に図を描いて、運動方程式まで導いてくれましたが、この運動方程式は、実はバネの上端を天井に固定して、おもりに周期的な力ka・sin(ωt)を加えて強制振動させたときの運動方程式と同じものになっています。  これなら、お持ちの参考書などに載っているのではありませんか。 >微分方程式の解き方が分からないんですが、どのように解くのですか?  この運動方程式から得られる2階非同次線形微分方程式の解き方が分からないようですので、概略をお伝えします。  運動方程式から次の形に整理します。(ヒント:Xをx=X-mg/k-Lに変数変換し、ω0=√(k/m)とおく。)   d^2 x/dx^2+ω0^2・x=ka/m・sin(ωt)  ・・・・・☆  この微分方程式は非同次だが、解き方は 1)右辺を0とおいたときの同次微分方程式の一般解を求める。 2)非同次方程式の特解を見つけ出す。 3)非同次方程式の一般解は1)の一般解に2)の特解を加えたものなので、これを作る。 4)初期条件から定数を決定する。  これらを順に実行していきます。(詳しくは微分方程式の参考書を見て下さい。) 1)同次方程式の一般解: x=A・sin(ω0・t+α)。 2)非同次方程式の特解: x=B・sin(ωt)と置いて非同次方程式(☆)に入れてみる。 ⇒B=1/(ω0^2-ω^2)・ka/m 故に、特解はx=1/(ω0^2-ω^2)・ka/m・sin(ωt)。 3)非同次方程式の一般解: x=A・sin(ω0・t+α)+1/(ω0^2-ω^2)・ka/m・sin(ωt)。 4)初期条件t=0のとき、おもりは釣り合いの位置にあるから、x(0)=mg/k+L。これを3)の一般解に代入すると、mg/k+L=A・sin(α)。  また、初期条件t=0のとき、おもりは静止していたはずだから、x'(0)=0。これを3)の一般解を時間微分したものに代入すると、0=Aω0・cos(α)+ω/(ω0^2-ω^2)・ka/m。  あとは、この2つを連立して、Aとtan(α)の値を決めれば終わりです。

共感・感謝の気持ちを伝えよう!

関連するQ&A

  • ばねの問題

    ばねにぶらさげたおもりの上下振動を考える。ばねの一端を天井の点Aに固定し、他の端におもりを結びつけるものとする。 おもりが受ける力は、重力と、バネの通じて天井がおもりを引く力である。おもりは質点とみなせるものとする。 (a)点Aを原点として鉛直下向きにx軸をとり、おもりの運動方程式をたてよ。なお、おもりの質量をmとし、バネの自然長をL、バネ定数をkとする。他にも必要な記号があれば設定すること (b)運動方程式にあらわれる定数(kやmなど)の値は既知であるものとして、おもりのつりあいの位置を求めよ。つりあいの位置をx=x0とする。 (c)おもりの運動方程式を解き、位置xの時間変化を図示せよ。 振動の周期がどこからどこまでなのかよく分かるような図にすること 考えたことは (a) 重力加速度gとして m*d2m/dt2=mg-k(x-L) となる (b)つりあいより kx=mg から x0=mg/k (c)は解き方などがわからないです これらの問題がいまいち分からないので教えてください。違う点などの 指摘をお願いいたします

  • ばねの問題です

    質量m のおもりが上端を天井に固定されたばね定数k の軽いばねの下端に取り付けられて鉛直線上で振動している.ばねはフックの法則に従うものとし,重力加速度の大きさをg とする.ばねの自然の長さを原点として鉛直上向きにx 軸をとる (1) おもりの運動方程式を書きなさい (2)(1)の運動方程式(微分方程式)の一般解を求めよ (3) おもりはどのような運動をするか説明しなさい (1)、(2)は一応できたのですが(3)がまったくわかりません。よければとき方、答えをお願いします

  • 物理のばねの問題です

    質量m のおもりが上端を天井に固定されたばね定数k の軽いばねの下端に取り付けられて鉛直線上で振動している.ばねはフックの法則に従うものとし,重力加速度の大きさをg とする.ばねの自然の長さを原点として鉛直上向きにx 軸をとる (1) おもりの運動方程式を書きなさい (2)(1)の運動方程式(微分方程式)の一般解を求めよ (3) おもりはどのような運動をするか説明しなさい なんですが解き方と答えを教えてください!お願いします

  • ばねの運動

    大学で基礎力学を履修しているものです。 今、重心のところを習っているんですが、次の問題がわかりません。 「自然長l、ばね定数kのばねの下端に質量m1の物体A、上端に質量m2の物体Bをとりつける。物体Bを支えた状態から静かに離して自由落下させたときの運動を考える。鉛直下向きにZ軸をとり、物体A,BのZ座標をそれぞれz1,z2とする。時刻T=0における物体Bの位置を原点とする。重力加速度の大きさをgとして次の問いに答えよ。 (1)T=0における物体の位置を求めよ (2)物体A,Bの運動方程式をそれぞれ書き下せ (3)重心座標の運動方程式を求め、これをといて重心座標を時刻Tの関数としてあらわせ (4)相対座標の運動方程式を求め、これをといて相対座標の運動方程式を時刻Tの関数として表せ という問題です。 (1)はわかるんですが、(2)、(3)、(4)がわからないです。 (2)は、考えてみたところ、m1a=m1-k(l-z1) m2a=(m1+m2)gーk(l-z1)となりました(a=d^2x/dt^2)

  • 力学(ばねの運動)についての質問です。

    力学(ばねの運動)についての質問です。 回答を読むと、大体分かるのですが、一部分からないところがあります。 問 質量mのおもりが、上端を天井に固定された軽いばね(ばね定数k)の下端に取り付けられ、鉛直線上で振動している。おもりの運動方程式を立て、運動を解け。 z軸を鉛直下向きにとった場合 運動方程式が md^2z/dt^2=mg-kzとなるまでは分かるのですが、 その後の解答が 「Z=z-mg/kとおくと、d^2z/dt^2=d^2Z/dt^2だから、上式は md^Z/dt^2=-kZ と書け、単振動の式と一致する。」 となっているのですが、なぜ d^2z/dt^2=d^2Z/dt^2 が 成り立つのかがよく分かりません。 解説よろしくお願いします。

  • 鉛直につるしたばねの問題

    質量が無視できるばね(バネ定数k) を上端に固定し下端に質量mの小球をぶら下げる するとばねはのびて小球は静止。 次にばねが自然長になるように鉛直上向きに引き上げt=0で静かに放す。 下向き正としてz軸をとるとする。ばねの自然長の位置をz=0とする 時刻tにおける小球の速さをv(t)、位置をz(t)とする。 また重力加速度をgとする。 (1)小球の初期条件を記せ(t=0における小球の位置と速さ) これは静かに放したというところから v(0)=0 z(0)=0 (2)小球の運動に関する運動方程式を記せ md^2z/dt^2 = mg-kz (3)v(t) z(t)を初期条件を用いて表せ z・・=g - (k/m)・zより z・・=-(k/m)(z - mg/k) より解がAsin(wt-φ) から 初期条件より w=√[k/m]から z(t) = Asin√[k/m]t v(t) = A√[k/m]cos√[k/m] (4)時刻t における小球の重力による位置エネルギーを求めよ (5)時刻tにおける小球の運動エネルギーを求めよ K = 1/2 m ・(A√[k/m]cos√[k/m])^2 = 1/2 m A^2(k/m)cos^2√[k/m] (6)tにおけるばねの弾性力による位置エネルギーをもとめよ と自力でやってみたところとお手上げのところがありました。 そもそも全て自信がありません。 ご教授お願い申し上げます。

  • ばねのもつエネルギーについて

    質量mの物体がばね定数kのばねでつり下げられている。1.物体をつるさないときのばねの長さをyとすると、物体をつるしたときのつりあいの位置でのばねの長さLを求めよ。2.また、質量mの物体をつるしたときのつりあいの位置を原点とし鉛直下向きにx軸をとる。ばねをつりあいの位置から鉛直下向きにx=Lだけ下げ話したときの物体の運動方程式を求め、3.物体の運動が単振動になることを示し振動の周期Tを求めよ。 この問題で1はmg=-k(L-y)で、L=にすればいいのでしょうか。2は運動方程式をどこまで求めればいいのかわかりません。3.は証明の仕方がよくわからないです。              

  • 鉛直方向のばね振り子

    ばね定数kの軽いばねを天井からつるし、他端に質量mの小球Aを取り付け、ばねが自然長になるようにAを手の上にのせて支えた。このときのAの位置を原点Oとし、鉛直下向きを正の向きとしてx軸をとる。また、重力加速度の大きさをgとする。 (a)Aを手の上にのせたまま、O(x=0)からゆっくりと鉛直に下降させたところ、やがてAは手から離れて静止した。Aが手から離れた時のAの位置をPとし、Pの位置座標をx=x0とする。 (1)Aが座標x(0<x<x0)にあるとき、手がAに加えている力を求めよ。ただし、鉛直下向きを正とする。 という問題で、自分は小球Aにはmgとばねの弾性力kxが働いているから、それでしかも鉛直下向きを正と書いてあるから、 弾性力は伸びた位置から上向きに行こうとするからーkxとして、重力は正の向きに働いているからmgで運動方程式F=mgーkxと式を立てたのですが、解答ではF=kxーmgとなっていたのですがなぜなのでしょうか?

  • ばねの運動方程式

    フックの法則に従う、質量の無視できるバネ(バネ定数:k)の先端に質量mのおもりを付け自然長よりx0伸びて静止した状態からさらに、aだけ引き伸ばして手を離す場合、運動方程式は下向きを正ととると、 -kx+mg=mx'' で正しいでしょうか。 ご教授お願いいたします。

  • ばねの問いについて

    ばねの問題で質問です。ばねを天井につるし(ばね乗数k)として、ばねに質量mの物体をつるして つりあわせます。いま物体が静止している状態、つまりばねの伸びは、mg/kですよね。 この状態からdだけ伸ばして、単振動をさせるとします。いま力は鉛直上向きを正とすると ばねの伸びをxとして ma = mg -kx ⇔a = -(k/m){x - mg/k }より、ω=√k/mで振動の中心がmg/kなのも わかります。 ここで質問なのですが、中心の座標はmg/kなのですが、原点はばねが自然長の位置という 理解でいいのですか? 振動の中心は、mg/kで、座標の原点は自然長の位置でいいのですか?