• 締切済み
  • すぐに回答を!

物理のばねの問題です

質量m のおもりが上端を天井に固定されたばね定数k の軽いばねの下端に取り付けられて鉛直線上で振動している.ばねはフックの法則に従うものとし,重力加速度の大きさをg とする.ばねの自然の長さを原点として鉛直上向きにx 軸をとる (1) おもりの運動方程式を書きなさい (2)(1)の運動方程式(微分方程式)の一般解を求めよ (3) おもりはどのような運動をするか説明しなさい なんですが解き方と答えを教えてください!お願いします

共感・応援の気持ちを伝えよう!

  • 回答数2
  • 閲覧数327
  • ありがとう数1

みんなの回答

  • 回答No.2
  • trokky
  • ベストアンサー率25% (6/24)

回答NO.1の者です。 おっしゃる通り、わたしが間違えておりました。申し訳ないです。 おもりがばねとつりあう位置は -kx + -mg = 0 つまり x = -mg/k X = x + mg/k として計算するのが正しいですので、変換してほしいです・・・ 本当にすみませんでした。

共感・感謝の気持ちを伝えよう!

  • 回答No.1
  • trokky
  • ベストアンサー率25% (6/24)

以下、X = (x - mg/k), d/dt = D 空気抵抗とかは無視 (1) ニュートンの運動方程式より m*D^2(X) = -k*X (a) Xにxの式を代入、変形して、m*D^2(x) + k*x -m*g = 0 (2) (a)式を変形して D^2(X) = -(k/m)*X これは関数Xが2回微分すると元の関数Xに戻り符号が変わって、定数がかけられていると考えられ、そのような性質を持つ関数としてsinを考える。 X = A*sin(w*t + th)と置いて(a)式に代入すると (A,thは任意の定数,w>0) -(w^2)*A*sin(w*t + th) = -(k/m)*A*sin(w*t + th) これは恒等式なのでsin(w*t + th)の係数を比較して、 w=√(k/m) よってX = A*sin{(√(k/m))*t + th} xの式に直して、x = A*sin{(√(k/m))*t + th} + m*g/k (b) (3)t=0おもりをばねにつるしたときに静止する位置(kx = mg)を鉛直上向きに速度vで通り過ぎるように運動させた場合(その後は放置)を考えると t = 0, x = mg/k, Dx = v を(b)式、(b)式を微分した式に代入して変形して、 A*sin(th) = 0 ((b)式に代入) v = A*w*cos(th) ((b)式を微分した式に代入) ((b)式)より th = 0 (A=0の時は恒等的にv=0となり不適) これを((b)式を微分した式)に代入して、A = v/w よってこの時おもりは [x = (v/w)*sin(w*t) +m*g/k] の運動をしている。 Xの式に直すと、[X = (v/w)*sin(w*t)]となり、これは単振動の式の形である。 つまり、このおもりは x = mg/k を中心とする単振動をし、その振幅は加えた力による振動中心の速度に比例して大きくなる。 大体こんな感じで大丈夫だと思います。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

回答ありがとうございます (1)はm*D^2(x) + k*x +m*g = 0ではないんじゃないですか?

関連するQ&A

  • ばねの問題です

    質量m のおもりが上端を天井に固定されたばね定数k の軽いばねの下端に取り付けられて鉛直線上で振動している.ばねはフックの法則に従うものとし,重力加速度の大きさをg とする.ばねの自然の長さを原点として鉛直上向きにx 軸をとる (1) おもりの運動方程式を書きなさい (2)(1)の運動方程式(微分方程式)の一般解を求めよ (3) おもりはどのような運動をするか説明しなさい (1)、(2)は一応できたのですが(3)がまったくわかりません。よければとき方、答えをお願いします

  • ばね振り子の問題を教えてください!!

    軽いばねの下端に0.10kgのおもりをつるし、上端を固定する また重力加速度は9.8m/s^2とする (1)振動の周期が0.4秒の時、ばね定数と振幅をを求めよ (2)ばねの伸びが最大の時、おもりの重力による位置エネルギーU1とばねの弾性力による位置エネルギーU2を求めよ テストが近いので大至急教えてください お願いします

  • 物理教えてください;;

    質量mのジェットコースターが高さhAからhBまで動くとき、重力のする仕事を求めよ。重力加速度の大きさをgとする。 質量mの小球を初速度v0で鉛直に投げ上げる。高さyのところでの速さをv、重力加速度の大きさをgとして、力学的エネルギーが一定であることを表す式を立てよ。 また、その式から最高点の高さhを求めよ。 ばね定数25N/mのばねの上端を固定し、下端に質量mのおもりをとりつけると、ばねは自然の長さからa(m)だけのびてつりあった。 この状態から、速さ1.0m/sでおもりを下向きにはじいたところ、ばねはさらにx(m)だけ伸びた。 a,x(m)を求めよ。

  • 物理のフックの法則の問題が分かりません(><)

    全部じゃなく分かるところだけでも助かりますので、教えてください!お願いします! 問1、フックの法則においては、原点からxの位置にある質量mの物体は-kx(k(>0)はばね定数)の力を受ける。t=0において、x=aにある物体を静かに離した。このとき、 (1)運動方程式と初期条件(t=0のときの位置xと速度V)を示せ。 (2)この運動方程式を解いて、物体の位置xの時間t依存性を求めよ。 問2、フックの法則に従うばねの一端を天井に固定し、他端に質量mのおもりをとりつけた系を考える。ばねの長さが自然長になるようにばねを支えた状態から、おもりを静かに放した(位置の原点をばねの自然長でのおもりの位置とせよ)。このとき、 (1)運動方程式と初期条件(t=0のときの位置xと速度V)を示せ。 (2)この運動方程式を解いて、物体の位置xの時間t依存性を求めよ。 問3、全問(2)の質量mのおもりをとりつけたばねを、ゆっくりと伸ばして平衡の位置(すなわち、おもりへの地球の重力とフックの法則による力がつり合った位置)までもってきた。ばねの自然長の位置を原点として、この平衡の位置x1を求めよ。

  • ばねの問題

    ばねにぶらさげたおもりの上下振動を考える。ばねの一端を天井の点Aに固定し、他の端におもりを結びつけるものとする。 おもりが受ける力は、重力と、バネの通じて天井がおもりを引く力である。おもりは質点とみなせるものとする。 (a)点Aを原点として鉛直下向きにx軸をとり、おもりの運動方程式をたてよ。なお、おもりの質量をmとし、バネの自然長をL、バネ定数をkとする。他にも必要な記号があれば設定すること (b)運動方程式にあらわれる定数(kやmなど)の値は既知であるものとして、おもりのつりあいの位置を求めよ。つりあいの位置をx=x0とする。 (c)おもりの運動方程式を解き、位置xの時間変化を図示せよ。 振動の周期がどこからどこまでなのかよく分かるような図にすること 考えたことは (a) 重力加速度gとして m*d2m/dt2=mg-k(x-L) となる (b)つりあいより kx=mg から x0=mg/k (c)は解き方などがわからないです これらの問題がいまいち分からないので教えてください。違う点などの 指摘をお願いいたします

  • ばねの運動

    大学で基礎力学を履修しているものです。 今、重心のところを習っているんですが、次の問題がわかりません。 「自然長l、ばね定数kのばねの下端に質量m1の物体A、上端に質量m2の物体Bをとりつける。物体Bを支えた状態から静かに離して自由落下させたときの運動を考える。鉛直下向きにZ軸をとり、物体A,BのZ座標をそれぞれz1,z2とする。時刻T=0における物体Bの位置を原点とする。重力加速度の大きさをgとして次の問いに答えよ。 (1)T=0における物体の位置を求めよ (2)物体A,Bの運動方程式をそれぞれ書き下せ (3)重心座標の運動方程式を求め、これをといて重心座標を時刻Tの関数としてあらわせ (4)相対座標の運動方程式を求め、これをといて相対座標の運動方程式を時刻Tの関数として表せ という問題です。 (1)はわかるんですが、(2)、(3)、(4)がわからないです。 (2)は、考えてみたところ、m1a=m1-k(l-z1) m2a=(m1+m2)gーk(l-z1)となりました(a=d^2x/dt^2)

  • 高校物理の問題が全然解りません。

    高校物理の問題が全然わかりません。 最初自力で頑張ろうと思ったのですが、考えても考えても全くわからなかったので質問させて頂きました。 わかる方がいらっしゃいましたらよろしくお願いいたします。 ばね定数kのばねの上端を固定し、下端に質量mのおもりをつけて静止させた。 このときばねは自然長よりLだけ伸びた。この時のおもりの位置をP点とする。 P点からさらにxだけおもりを下に引き、静かに手を放すとおもりは運動を始めた。 重力加速度の大きさをg、ばねが自然長のときの下端の位置を重力による位置エネルギーの基準面として、次の問に答えよ。 問1 Lをk,m,gを用いて表せ。 問2 おもりから手を放すまえ、おもりの持っている力学的エネルギーをk,m,L,x,gを用いて表せ。 問3 おもりが運動を始めた後、おもりがP点を通過するときの速さをvとすると、P点でおもりのもっている力学的エネルギーをk,m,L,g,vを用いて表せ。 問4 おもりがP点を通過するときの速さvをk,m,xを用いて表せ。

  • 力学(ばねの運動)についての質問です。

    力学(ばねの運動)についての質問です。 回答を読むと、大体分かるのですが、一部分からないところがあります。 問 質量mのおもりが、上端を天井に固定された軽いばね(ばね定数k)の下端に取り付けられ、鉛直線上で振動している。おもりの運動方程式を立て、運動を解け。 z軸を鉛直下向きにとった場合 運動方程式が md^2z/dt^2=mg-kzとなるまでは分かるのですが、 その後の解答が 「Z=z-mg/kとおくと、d^2z/dt^2=d^2Z/dt^2だから、上式は md^Z/dt^2=-kZ と書け、単振動の式と一致する。」 となっているのですが、なぜ d^2z/dt^2=d^2Z/dt^2 が 成り立つのかがよく分かりません。 解説よろしくお願いします。

  • 単振動と微分方程式の問題です

    単振動と微分方程式の問題です、よろしくお願いします m(kg)のおもりを吊るした振り子の一端を天井に固定し、さらに水平方向に動くばねの一端をおもりに取り付け、おもりを鉛直下で静止させる。 このとき、ばねはちょうど自然長とする。なお、ばね定数をk(N/m)、重力加速度の大きさをgとする。 ここで、振り子と鉛直線のなす角度をθ(rad)傾けた場合の運動を考える。 (1)静止して釣り合ったおもりの位置を原点Oとして、その原点Oからの水平方向のおもりの変位をx(m)、垂直方向の変位をy(m)として水平方向と垂直方向の2つの運動方程式を立てよ。 ただし、振り子がおもりを引く力をT(N)として、式中に残したままで良い。 (2)振り子の吊り点からおもりの中心までの長さをL(m)とする、振り子と鉛直線とのなす角θが小さい場合、Sinθ=θ、Cosθ=1 と近似されます。これを利用し、水平方向のおもりの微小変位x(m)と垂直方向のおもりの微小変位y(m)を表せ。

  • 単振動(バネ)

    鉛直上向きにy軸をとり、重力加速度の大きさをgとする。ばね定数kのばねの上端を固定し、下端に質量mの物体をつける。ばねが自然長であるときの物体の位置をy=0とする。ばねの質量、空気抵抗は無視できる。物体は鉛直方向のみ運動する。 1、物体の運動方程式を求めよ 2、つりあいの位置y_eを求めよ 3、つりあいの位置からの変位をy_2(t) = y(t) - y_eとする。y_2に関する運動方程式を求めよ 4、運動方程式を解いて、位置y(t)と、v(t) = y '(t)の一般解を求めよ 5、時刻t= 0にy = y_0 の位置で静かに物体を放した(v (0) = 0 )とする。その後の運動y(t),v(t)を求めよ y_eはyの右下に小さいeがあるという意味 よろしくお願いします