• ベストアンサー
  • すぐに回答を!

微分方程式

次の問題が解けません。教えて下さい。 次の微分方程式の一般解と初期条件を満たす特殊解を求めよ。 (1) y’+y=2   y(0)=0 (2) xy’+2y=3x    y(1)=5 (3) xy’-y=x    y(1)=7 (4) y’+y=e^x   y(0)=1 この4問が全く分からなくて困っています。解き方教えて下さい。 できれば途中式など詳しい解説があればうれしいです。 宜しくお願いします。

共感・応援の気持ちを伝えよう!

  • 回答数3
  • 閲覧数187
  • ありがとう数3

質問者が選んだベストアンサー

  • ベストアンサー
  • 回答No.1
  • Ae610
  • ベストアンサー率25% (385/1500)

(1): 一般解:y = 2-Ce^(-x) (C;任意常数) 特殊解:y = 2(1-e^(-x)) (2) 一般解:y = x+Cx^(-2) (C;任意常数) 特殊解:y = x+4x^(-2) (3) 一般解:y = xlog(x)+Cx (C;任意常数) 特殊解:y = xlog(x)+7x (4) 一般解:y = (1/2)・e^x+Ce^(-x) (C;任意常数) 特殊解:y = cosh(x)

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます。

関連するQ&A

  • 微分方程式

    もうすぐ数学のテストなのですが、交通の事情などで今まで授業にあまり出ることが出来なかったため微分方程式の解き方がよく分かりません。 微分方程式を初期条件のもとで求めるといったような問題で、簡単なものだとは思うのですが教科書にもあまり詳しく書かれていないため困っています。 微分方程式の解き方を教えていただけないでしょうか? もしくはそういったサイトなど無いでしょうか? よろしくお願いします。

  • 微分方程式の問題です

    x(t)''+2ax(t)'+(1+a^2)x=sintを考える。 (1)同次方程式x(t)''+2ax(t)'+(1+a^2)x=0の一般解を求めよ。 (2)同次方程式x(t)''+2ax(t)'+(1+a^2)x=0に対して、初期条件x(0)=0,x(0)'=1を与えた時の特解を求めよ。 (3)a=0の時、非同次方程式x(t)''+2ax(t)'+(1+a^2)x=sin(t)の特解を求めよ。 以上です。 自分で解いたのですが、合っていますでしょうか?また、はずれていれば解説付きで解き方お願いいたします。ただし、(3)については解けませんでした。 (1) x(t)=C1exp{(-a+i)t}+C2exp{-(a+i)t} (2) x(t)=(-i/2)exp{(-a+i)t}+(i/2)exp{-(a+i)t} (3) a=0なので、x(t)''+x=sin(x)となって、未定係数法を使って解いた方がよろしいのでしょうか? その場合、x(t)=x(sin(x)+cox(x))とおいて、微分方程式に代入して解くのですか?

  • 微分方程式の問題2

    微分方程式x''-4x'+20x=0 の初期条件x(0)=1、x(0)=6を満たす解x=x(t)をあらわす式を求めよ

その他の回答 (2)

  • 回答No.3
  • alice_44
  • ベストアンサー率44% (2109/4758)

(1)(4) eのx乗 を掛ける。 (2) x を掛ける。 (3) xの2乗 で割る。 …でもいいんじゃない? 素朴で。

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます。

  • 回答No.2
  • Tacosan
  • ベストアンサー率23% (3656/15482)

じゃあこっちは解き方: (1) と (4) は定数変化法, (2) と (3) は同次形→変数分離.

共感・感謝の気持ちを伝えよう!

質問者からのお礼

ありがとうございます。

関連するQ&A

  • 微分方程式について

    微分方程式について。 yやdy/dxの形ならば解けるのですが ちょっと変わった形になると解けずに困っております。 回答お願いします。 1 未知関数x(t),y(t)に関する微分方程式 x´(t)=y(t), y´(t)=-x(t)を 初期条件x(0)=a, y(0)=bの下で解け。 2 x=x(t)を変数tのC^∞級関数とする。 このとき、 d^2x/dt^2 +(dx/dt)^2 -4=0 を解け。 3 tの関数x(t)が次の微分方程式を満たすとする x´+x^2+a(t)x+b(t)=0 ただしx´=dx/dtである。 ・x(t)=u´(t)/u(t)のとき、関数u(t)の満たす微分方程式を求めよ。 ・微分方程式 x´=x(1-x)の一般解を求めよ。 長いですが回答お願いします

  • 微分方程式2

    次の微分方程式の解き方を教えて下さい。 dn=α*n*dx 記号α(アルファー) 初期条件としてはx=0のときn=1である。

  • 微分方程式について

    次の微分方程式を解いて欲しいのですが。 m*dv/dt=eE-m*v/τ 初期条件はt=0の時v=v0です。 解はv=v0*e^(-τ/t)+e*τ*E/m です。 この途中計算式を教えて欲しいです。

  • 微分方程式

    問題を解いていて少し疑問に思ったので質問させてください。 u=u(t)を未知関数として A(du/dt) + B*u = E*sin(ωt) について、一般解を求め、その後初期条件u(0)=u0のもとで解け。 ただし、A,B,E,ωは正定数とする。 上記のような問題なんですけど、これは一階微分方程式ですよね? 一般解は、二階微分方程式では特性方程式によって求めた基本解と、未定係数法で求めた特殊解を重ね合わせて作るという印象があります。 このような一階微分方程式の場合はどのように解けばいいですか? 二階の時と同じように解いてよいならば、特性方程式の解から基本解を作る時など、二階微分方程式の時と同じようにやってよいものか疑問です。 特殊解も未定係数法もつかってよいのでしょうか。 詳しい方いましたら教えてください。

  • 微分方程式の解

    微分方程式の解 次の問題が分かりません。 どなたか答えていただけるとうれしいです。 (1)式を初期条件φ1(0)=A、φ2(0)=B、|A|^2+|B|^2=1のもとで解け。 ただしa_j(j=1,2,3)を実数、Iを2*2行列として(2)(3)式を用いてよい。

  • 微分方程式

    こんにちは^^ 微分方程式の問題でつまづいています。 m(d^2x/dt^2)=-kx^3 初期条件:t=0のときx=0、v=U という方程式なんですがどこから手をつけたらよいのか見当もつきません。 x=Asin(wt+δ) とおいたりしてみたのですが、どうにもx^3というのがやっかいです汗 一般解の導き方を教えてください。よろしくお願いいたします。

  • 微分方程式

    微分方程式 dy/dx-2xy=2xy~2 について。 (1)z=1/yとするとき、z=z(x)が満たす微分方程式を求めよ (2)(1)で求めたzに対する微分方程式の一般解を求めよ (3)yの一般解および特殊解を求めよ という問題があります。 これは教科書にあるような、微分方程式の公式を用いて解くのでしょうか よく分からないので詳しく教えてください。

  • 微分方程式

    (1)x>0でx^2y''+xy'-y=0(*)という問題でy=xが解であることを求めたのですが、yと独立な微分方程式(*)の解が求められません。 (2)x^2(d^2y/dx^2)-2y=0の解き方をいろいろ調べて試したのですがどうしても解けません。 この二点について途中式等詳しく教えていただけないでしょうか?お願いします。

  • 微分方程式を解く問題が分かりません。

    微分方程式を解く問題が分かりません。 次の微分方程式が解けません。 {(d^2)x}/{d(t^2)}+2ε(dx/dt)+(ω^2)x=0 ただしε<ωとする。また初期条件をt=0でx=0、dx/dtでv0とする。 が解けません。x=e^(αt)とおいて解いていくようなのですが・・・。 よろしくお願いします。

  • 微分方程式の解き方が分からず、困っています。

     現在、試験に向けて微分方程式の勉強をしているのですが、下記の問題の解き方が分かりません。  教科書を参考に(1)は変数分離系、(2)は同次形、(3)は線形で解こうとしましたが、どの問題も積分するところで複雑な式になってしまい、解けれません。  分かる問題だけでも良いのでアドバイス、解き方を教えてください。よろしくお願いします。     (1)次の微分方程式の一般解を求めよ dy/dx=y^2+1 (2)次の微分方程式の一般解を求めよ y'=(y/x)(log(y/x)+1) (3)次の微分方程式の解でt=0のときx=1の条件を満たすものを求めよ x'cost+xsint=1