• ベストアンサー

累乗 累乗根 同値性

x,yを実数、p,qを有理数として、 pが奇数のとき、 y=x^p ⇔ y^(1/p)=x なので、同値性は保たれます。 pが偶数のとき、 y=x^p ⇔ y^(1/p)=x は成り立たず、同値性は保たれない(同値変形でない)。 (x,yが正数であれば同値性は保たれる) pが奇数で、qが偶数のとき(qが奇数で、pが偶数のとき) y=x^(p/q) ⇔ y^(q/p)=x は成り立たず、同値性は保たれない(同値変形でない)。 (x,yが正数であれば同値性は保たれる) と理解しています。 p,qが無理数のときも同じように考えて良いのでしょうか? 以上、ご回答よろしくお願い致します。

質問者が選んだベストアンサー

  • ベストアンサー
  • alice_44
  • ベストアンサー率44% (2109/4759)
回答No.1

無理数を奇数と偶数に分けて考えよう というつもりですか? それは無理だと思います。 指数を実数の範囲にして同値性を保ちたいなら、 x,y を正数だけに制限しておくのが安全です。

RY0U
質問者

お礼

新しく再度質問させて頂きます。 もしよろしければ、そちらにご回答頂けないでしょうか。 よろしくお願い致します。

RY0U
質問者

補足

いつもご回答ありがとうございます。 すいません。。。p,qを無理数で奇数と偶数に別けるのは無理ですね。 >指数を実数の範囲にして同値性を保ちたいなら、 >x,y を正数だけに制限しておくのが安全です。 無理数乗や、無理数乗根を考える場合はx,yは正数とすれば 同値性は保たれるのですか? また、正数でない場合(x,yが負の数)は同値性は保たれないのでしょうか? 以上、ご回答よろしくお願い致します。

全文を見る
すると、全ての回答が全文表示されます。

関連するQ&A

  • 累乗 累乗根 同値性 その2

    累乗と累乗根の同値性について前回質問させて頂きました。 前回の質問内容:http://okwave.jp/qa/q7768635.html 前回、ご回答頂いた内容で、 >指数を実数の範囲にして同値性を保ちたいなら、 >x,y を正数だけに制限しておくのが安全です。 と教えて頂きました。 y=x^pにおいて無理数乗や、無理数乗根を考える場合はx,yは正数とすれば 同値性は保たれる理由はどうしてでしょうか? 指数が偶数の場合に、同値性が崩れると理解しています。 無理数は偶数ではないから、同値性が崩れることはないと考えているのですが そんなに単純ではないのでしょうか? x,yが正数でない場合(x,yが負の数)は同値性は保たれないのでしょうか? 以上、ご回答よろしくお願い致します。

  • 同値について

    例えば「実数x、yがX^2+Y^2=4を満たしながら動くとき2x+yの取りうる値の範囲をもとめよ」 という問題で、解答では X^2+Y^2=4、2x+y=kを満たすような実数x、yが存在する ということと X^2+(kー2x)^2=4 を満たすような実数xが存在することは同値である と書かれていたのですが、同値とはどういう意味でしょうか? また、同値ならばどのようなことがいえるのでしょうか? のみこみが悪いので、丁寧に教えていただけると助かります

  • 数学II同値変形についておしえてください。

    無理式を含む方程式を解く際に同値変形するのですが学校で教わったやり方が良くわからないので質問します。 √P(x)=Q(x) で同値変形の条件は P(x)≧0、Q(x)≧0となっているのですがなぜこういう風にいえるのですか? なぜP(x)<0という場合はないのですか? 愚問ですいません…

  • 同値変形について。

    同値変形について質問です。 「焦点がF(3,0) F´(-3,0)で点A(-4,0)を通る楕円の方程式を求めよ。」 という問題なのですが、参考書の解答では 楕円上の任意の点をP(x,y)とし、 AF+AF´=8から、 √{(x-3)^2+y^2}+√{(x+3)^2+y^2}=8 両辺を2乗して整理すると、16√{(x+3)^2+y^2}=12x+64 両辺を4で割って、更に2乗すると 16(x^2+6x+9+y^2)=9x^2+96x+256 これを整理して、x^2/16 + y^2/7 = 1 という風に、答えを導いているのですが、 変形過程で2度「2乗」しています。 2乗すると同値ではなくなるというのは知っているのですが、 この場合は同値ではなくならないのでしょうか? 問題を解くときに、両辺を2乗していいときと悪いときがあるらしいのですが、それがよくわからなくて・・・。 また、どのようなときに、2乗しても同値性を失わないのでしょうか? どのようなときに2乗すると同値ではなくなるのでしょうか? あと、自分の知っている同値ではない変形は、「両辺を2乗する」ということのみなのですが、 他に気をつけたほうがいい、同値性を失ったりする変形には、どのようなものがあるのでしょうか? 今までここあたりをうやむやにして数学を解いていたため、たまに納得がいかなかったりします。。 どなたか教えてください><

  • (x,y)に有理数があるかどうか

    x,yを実数としたとき(x<y)、区間(x,y)に有理数があることをしめすという教科書の問題を模範解答とは違う方法でやってみたので、間違ってるところを指摘もらえますか?よろしくお願いします。 有理数は上にも下にも有界でないので、p<x<y<qとなる有理数p、qが存在する。 1. (p+q)/2∈(x,y)ならば終了 2. そうじゃない場合 a) y<(p+q)/2 ならば (p+q)/2=q_1とし p<x<y<q_1 b) (p+q)/2<x ならば p_1=(p+q)/2とし (p_1)<x<y<q と区間を狭めていく。 そこからまた 不等式の両端を平均して、、、というのをくりかえす 有理数足す有理数÷2は有理数。 y-xは無限大や無限小ではないので、 有限回のうちに区間(x,y)に平均値を持つような有理数が出てくる といった感じでしめせてますでしょうか。。。?

  • 連続関数

    関数の連続性を証明するところがわからないので質問します。 xが無理数ならば、f(x)=0とし、xが有理数で既約分数p/q(ただしq>0)のかたちに書けるときは、f(x)=1/qとする。 このように定義された関数fは無理数xで連続、有理数xで非連続である。その証明はやさしい。 xが無理数とし、εを任意の正数とする。1/q≧εすなわちq≦1/εとなる正整数qは有限個しかないから、δ>0を十分に小さく選ぶと開区間(x-δ,x+δ)には、上の条件を満たすqにたいする既約分数p/qは存在しない。したがって任意のy∈(x-δ,x+δ)に対して |f(y)-f(x)|=1/q<εとなる。fはxで連続である。一方、有理点のどんな近傍にも無理点が存在し、そこでfの値は0だから有理点では連続ではない。 自分は具体的な数としてx=√2、ε=0.4とすると、q≦2.5となり、q=1,2。 p/q=1/1,2/1,1/2,3/2などいろいろあげられますが、δ=0.01とすると(√2-0.01,√2+0.01)=(1.404・・・,1.424・・・)にはp/qはふくまれません。 ここからがわからないところなのですが、x±δは無理数に有理数を足したり引いたりした無理数であることがあるので、yが無理数になり、f(y)=0となり|f(y)-f(x)|=1/q<εが成立しないような場合があると思います。自分は本があっているなら、f(x)=0より、 f(y)=1/qになると予想しました。どなたか任意のy∈(x-δ,x+δ)に対して|f(y)-f(x)|=1/q<εとなる。を説明してください。お願いします。

  • 同値性の崩壊

    定円x^2+y^2=r^2の周上を点P(x,y)が動くとき,座標が(y^2-x^2xy)で表される点Qはどんな曲線を動くか。 x^2+y^2=r^2から,P(x,y)とするとx=rcosΘ,y=rsinΘと表される。Q(X,Y)とすると X=y^2-x^2=-r^2cos2Θ Y=r^2sin2Θ よってX^2+Y^2=r^4(cos^22Θ+sin^22Θ)=r^4 ゆえに,点Qは円x^2+y^2=(r^2)^2の周上を動く。 教えてほしいところ この問題を解き方が違和感があります。 X=y^2-x^2=-r^2cos2Θ Y=r^2sin2Θ を両辺正でなければ2乗してしまうと同値性崩れますよね? また、2乗したものをそのまま足す場合、同値性は崩れる心配はないんですか?? この問題を上のように解いて、同値性が崩れる心配がないもしくは同値性が保たれるのは自明である理由を教えてください。

  • 対偶と背理法

    こんにちは。  実数xが無理数であるとき,2xは無理数であることを証明せよ。 対偶は 2xが有理数ならばxは有理数である。     2xが有理数なので、2x=p/q (pとqは互いに素)とおける。     両辺2で割って、x=p/2q である。ここで、右辺のp/2qは有理数     であるから、左辺xも有理数。     対偶が真なので元の命題も真である。 これを背理法で解くとき,     2xを有理数とすると,2x=r (rは有理数)とおくと,x=r/2      rは有理数なので,r/2も有理数である。このことはxが無理数で     あることと矛盾する。     したがって,2xは無理数である。 何がどう違うのでしょうか。

  • 同値変形?

    ax=b a=0の時、xが実数解を持つときのbの値を求めたいんですが、 最近同値変形を習って簡単な不等式とか等式も黒板でわざわざ同値の記号を使って式変形して授業する形になりました。なのですべての方程式とかは同値変形の記号で最後までつないで綺麗に答えを導き出せる!(例えば2x-3>3x+1⇔2x-3x>1+3⇔x<-4のように)などという考えを持ってしまったんですが、この問題にあって挫折しました。 同値変形とか考えなければ普通にb=0 とわかりますが・・・。でもこの逆は本当に成り立っているおか?と思ってしまいます。

  • 同値な距離??

    (R^2,d)をユークリッド空間とする。 x=(x1,x2) y=(y1,y2)∈R^2 にたいして d'(x,y)=d(x,0)+d(y,0) x1y2≠x2y1 のとき      d(x,y)     x1y2=x2y1 のとき とおく。 このときd'はR^2の距離であるが、dと同値ではない事を示せ。 d'がR^2の距離であることは示せたのですが同値な距離というのが出来なくて… 位相空間Q(R^2,d)について Q(R^2,d)⊂Q(R^2,d') Q(R^2,d')⊂Q(R^2,d) を示せれば同値であるのでどちらかが成り立たない場合を示せればいいと分かったのですが、 どう示せばいいか分かりません… x1y2≠x2y1 のときを考える。 d(x,y)<d(x,0)+d(y,0)=d'(x,y) となるので実数の連続性から d(x,y)<ε<d'(x,y) となるεが取れる(ε>0) ここでU∈Q(R^2,d)を取ると ∃(ε>0) s.t. Vε(x,d)⊂U しかし Vε(x,d')⊃Vε(x,d)⊂U となるのでU∈Q(R^2,d')とならない よって同値ではない。 どうでしょうか…全然自信がありません( ´・ω・`)